Physical Significance/Interpretation of Angular Wave Number.

Click For Summary
The angular wave number 'k' is defined as k = (2π)/λ, where λ is the wavelength. It signifies the number of radians of phase change per unit distance, specifically radians per meter. The factor of 2π indicates that there are 2π radians in one complete cycle, making k a measure of spatial frequency. For any wave, the number of wavelengths per radian is always 1/(2π). Understanding 'k' helps in analyzing wave behavior in various physical contexts.
ApuroopS
Messages
6
Reaction score
0
My doubt is on the angular wave number 'k'

in case of a sinusodal wave on a string,
the angular wave number

k = (2*pi)/lambda

lambda being the wave length of the wave.
What does 'k' signify in physical terms ?

for e.g.

general wave number = 1/lambda

again, lambda being the wavelength of the wave.

the physical significance for this is basically the number of wavelengths per unit distance


so along those lines, does the angular wave number stand for number of wavelengths per radian ??
Or something else ?

any help in clarifying this will be appreciated.
Cheers.

btw, my apologies in advance for the bad presentation, but can't actually texify from my cellphone.
 
Physics news on Phys.org
ApuroopS said:
My doubt is on the angular wave number 'k'

in case of a sinusodal wave on a string,
the angular wave number

k = (2*pi)/lambda

lambda being the wave length of the wave.
What does 'k' signify in physical terms ?
.
.
.
so along those lines, does the angular wave number stand for number of wavelengths per radian ??
Or something else ?
It is something else.

First, keep in mind that angular quantities can be measured in terms of either radians or cycles, where 1 cycle is 2π radians. And, even though radians and cycles are typically considered dimensionless (unitless) quantities, it can be useful to include radians in cycles in tracking the units.

So, the factor of "2π" in the equation for k can really be thought of as "2π radians per cycle" or "2π radians / 1 cycle. Also, think of the units of λ as being in meters per cycle, rather than simply meters. (If we are using meters as our basic unit of length -- but we could easily use feet or furlongs as well.)

k = (2π radians)/(1 cycle) * (1/λ)

Since λ has units of meters per cycle, the above gives units of "radians per meter" for k. In other words, it is the number of radians of phase that occur over a length of 1 meter.

As an example, suppose a wave has a wavelength of 2 m -- or really 2 m/cycle. A cycle of the wave is then 2 meters long, which also corresponds to 2π radians, or in other words it's π radians in 1 meter. So k is π radians per meter. We typically don't include the radians in the units, so we just say it's π m-1.

...does the angular wave number stand for number of wavelengths per radian?
The number of wavelengths per radian is always 1/(2π), for any wave.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 29 ·
Replies
29
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
20
Views
5K
  • · Replies 1 ·
Replies
1
Views
33K
  • · Replies 2 ·
Replies
2
Views
2K