Physics 101 mechanics help -- Bullet fired by a rifle barrel

AI Thread Summary
The discussion focuses on calculating the acceleration and position of a bullet fired from a rifle, with the speed equation given as v = (−5.00 ✕ 10^7)t² + (2.80 ✕ 10^5)t. The acceleration is derived as a = dv/dt, resulting in a = 2(5*10^5)t + 2.8*10^5, indicating the bullet's acceleration is 2.8*10^5 m/s² at t=0. There is confusion regarding the sign change in the derivative, prompting a request for clarification on the calculations. The thread emphasizes the importance of checking derivatives and completing all parts of the problem for accurate results.
EishaR
Messages
1
Reaction score
0
Homework Statement
A repeating rifle fires 2 LR bullets such that as they travel down the barrel of the rifle their speed is given by v = (−5.00 ✕ 107)t2 + (2.80 ✕ 105)t,where v is in meters per second and t is in seconds. The acceleration of the bullet just as it leaves the barrel is zero.
Determine the acceleration (in m/s2) and position (in m) of the bullet as a function of time when the bullet is in the barrel. (Use the following as necessary: t. Round all numerical coefficients to at least three significant figures. Do not include units in your answers. Assume that the position of the bullet at t = 0 is zero.)
a (t)=
x(t)=

(b)Determine the length of time the bullet is accelerated (in s).

(c) Find the speed at which the bullet leaves the barrel (in m/s).

(d) What is the length of the barrel (in m)?
Relevant Equations
y v = (−5.00 ✕ 10^7)t2 + (2.80 ✕ 10^5)t,
a) a= dv/dt = 2(5*10^5)t+2.8*10^5
2(5*10^5)(0)+2.8*10^5=2.8*10^5m/s^2
 
Physics news on Phys.org
EishaR said:
Homework Statement:: A repeating rifle fires 2 LR bullets such that as they travel down the barrel of the rifle their speed is given by v = (−5.00 ✕ 107)t2 + (2.80 ✕ 105)t,where v is in meters per second and t is in seconds. The acceleration of the bullet just as it leaves the barrel is zero.
Determine the acceleration (in m/s2) and position (in m) of the bullet as a function of time when the bullet is in the barrel. (Use the following as necessary: t. Round all numerical coefficients to at least three significant figures. Do not include units in your answers. Assume that the position of the bullet at t = 0 is zero.)
a (t)=
x(t)=

(b)Determine the length of time the bullet is accelerated (in s).

(c) Find the speed at which the bullet leaves the barrel (in m/s).

(d) What is the length of the barrel (in m)?
Relevant Equations:: y v = (−5.00 ✕ 10^7)t2 + (2.80 ✕ 10^5)t,

a) a= dv/dt = 2(5*10^5)t+2.8*10^5
2(5*10^5)(0)+2.8*10^5=2.8*10^5m/s^2
For the first part, check your derivative. You must attempt the other parts also.
 
Last edited:
How did −5.00 ✕ 10^7 turn into +5.00 ✕ 10^5?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top