MHB What is the velocity vector after a pinball bounces off a baffle?

Click For Summary
The discussion focuses on determining the velocity vector of a pinball after it bounces off a baffle in an elastic collision. It is established that the velocity component parallel to the baffle remains unchanged, while the component perpendicular to the baffle is reversed. The velocity vector before the bounce can be expressed as (v_x, v_y), and after the collision, it becomes (-v_x, v_y). The relationship between the components of the velocity vector and their direction relative to the baffle is clarified using unit vectors. Understanding these principles is essential for solving the problem accurately.
WMDhamnekar
MHB
Messages
378
Reaction score
30
Hi,

A pinball moving in a plane with velocity s bounces (in a purely elastic impact) from a baffle whose endpoints are p and q. What is the velocity vector after the bounce?

I don't understand how to answer this question? Any math help, hint or even correct answer will be accepted?
 
Physics news on Phys.org
Use vectors addition and elastic collision concept that velocity along the baffle will remain unchanged and velocity perpendicular to baffle will get reversed.
 
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
 
Country Boy said:
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
Hi,

Author has given the following answer to this question. Would you tell me how does the highlighted terms relate to velocity before and after the bounce?

1624939118433.png
 
A vector $u = u_x + u_y $ you can write a vector as a sum of its components.
$(s. \hat{u} ) $ represents the magnitude of the component of vector s along baffle and if you multiply by unit vector $\hat{u}$ you get vector component of s along with the baffle similarly $(s. \hat{v})$ represents the magnitude of the component of vector s normal to baffle and again if you multiply by unit vector $\hat{v}$ you will get vector component of s normal to baffle.
For reflected ray normal gets reversed so the normal vector is expressed with the negative sign there.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
9
Views
2K