Placing a pole with maximal radius subject to constraints

AI Thread Summary
The discussion revolves around optimizing the placement of a smaller circle within a defined area constrained by a larger circle and a square. The user seeks to maximize the radius of the smaller circle while adhering to specific geometric constraints involving angles and distances from lines. They express uncertainty about the existence of a closed-form solution and inquire about optimization tools or alternative solving methods. A key insight is that the smaller circle will touch both the edge of the square and the arm at a 45-degree angle. The thread highlights the mathematical relationships and calculations involved in determining the optimal radius.
GuyWhoOnceToldYou
Messages
2
Reaction score
0
TL;DR Summary
Looking to place a pole with maximal radius, constrained by objects surrounding it
I have a problem that I imagine does not have a closed-form solution and requires the use of some kind of optimization solver. I am not an engineer myself, so forgive me if the question seems stupid.

The problem is as follows: I have a circle bound in a square, and an arm going from the center of the circle to the corner of the square (so, 45 degrees), and I need to place a circle with the largest radius possible in the area bound between the outside of the big circle, the inside of the square, and below the arm (the area in green in the image)
1718302190798.png


I can describe these constraints mathematically: I want to maximize some r subject to the constraints: let 2*w be the total width of the arm, and r_circle be the radius of the black circle, then the constraints are:

(r+r_circle)*(cos(alpha),sin(alpha)) is at least distance w+r from the line y=x (I can directly calculate the closest point on the line as a function of r and alpha to simplify this one, I just haven't done that yet).
(r+r_circle)*(cos(alpha),sin(alpha)) is at least distance r from the line from the line x=r_circle (the right edge of the square) (again, I can calculate the point as a function of r, alpha directly)
alpha is between 0 and 45 degrees


So what I'm looking for is either (A) a better way to solve this, or (B) a tool that can solve this.

Thanks in advance!
 
Engineering news on Phys.org
Where the big circle has radius R;
The small circle will have a radius; r = R * 0.123308641756286

R = 1.
Small circle centred at x = 1 - r ; y = x - r * Sqrt(2)
Distance between centres d = Sqrt( x*x + y*y ) ;
Find r, for d - r = 1 ;
 
  • Like
Likes DeBangis21 and GuyWhoOnceToldYou
Baluncore said:
Small circle centred at x = 1 - r ; y = x - r * Sqrt(2)
Of course! I can assume the resulting circle will touch both x=1 and the arm at 45 degrees, that didn't occur to me. Thank you! I will have to adjust to account for the width of the arm, but I think that would be easy.
 
Welcome to PF.

0.123308641756286 = 1 / ( 3 + √2 + 2*√( 2 + √2 ) )
0.123308641756286 = 5 - 3*√2 - 2*√( 10 - 7*√2 )
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top