Please check this particular solution excercise

  • Context: MHB 
  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Particular solution
Click For Summary
SUMMARY

The forum discussion centers on solving the ordinary differential equation (ODE) $y'' + 3y' - 4y = \sin(\omega t)$ using the method of undetermined coefficients. The user employed the ansatz $y_p = A \sin(\omega t) + B \cos(\omega t)$ and derived a system of equations to solve for coefficients A and B. The final results were confirmed to match the output from Wolfram Alpha (W|A), indicating the solution is $y_p(t) = -\frac{\omega^2 + 4}{(\omega^2 + 1)(\omega^2 + 16)} \sin(\omega t) - \frac{3\omega}{(\omega^2 + 1)(\omega^2 + 16)} \cos(\omega t)$.

PREREQUISITES
  • Understanding of ordinary differential equations (ODEs)
  • Familiarity with the method of undetermined coefficients
  • Knowledge of trigonometric functions and their derivatives
  • Experience with computational algebra systems (CAS) like Wolfram Alpha
NEXT STEPS
  • Study the method of undetermined coefficients in depth
  • Learn how to use Wolfram Alpha for solving differential equations
  • Explore the implications of damping in second-order linear ODEs
  • Investigate the stability of solutions to linear differential equations
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with differential equations, particularly those seeking to validate their solutions using computational tools.

ognik
Messages
626
Reaction score
2
Given $y'' + 3y'-4y= sin \omega t $, I used an ansatz of $y_p = A sin \omega t + B cos \omega t$

$\therefore y' = A \omega cos \omega t -B \omega sin \omega t, y'' = -A \omega^2 sin \omega t - B \omega^2 cos \omega t $

Substituting and equating coefficients, I get $ -A \omega^2 - 3B \omega - 4A = 1 (a), -B \omega^2 +3A \omega -4B = 0 (b)$

From (b) $A = \frac{B \omega^2 + 4B}{3\omega} $, substituting this into (a) gives $B = \frac{3}{35 \omega - \omega^3} $

I'd appreciate if someone could check this please?
 
Physics news on Phys.org
According to W|A, the particular solution is:

$$-\frac{\omega^2+4}{\left(\omega^2+1\right)\left(\omega^2+16\right)}\sin(\omega t)-\frac{3\omega}{\left(\omega^2+1\right)\left(\omega^2+16\right)}\cos(\omega t)$$

You have assumed the correct form for the particular solution:

$$y_p(t)=A\sin(\omega t)+B\cos(\omega t)$$

And so we compute:

$$y_p'(t)=A\omega\cos(\omega t)-B\omega\sin(\omega t)$$

$$y_p''(t)=-A\omega^2\sin(\omega t)-B\omega^2\cos(\omega t)$$

Substituting for $y_p$ into the given ODE, and appropriately arranging, we obtain:

$$\left(-A\omega^2-3B\omega-4A\right)\sin(\omega t)+\left(-B\omega^2+3A\omega-4B\right)\cos(\omega t)=1\cdot\sin(\omega t)+0\cdot\cos(\omega t)$$

Equating coefficients, we obtain the system:

$$A\omega^2+3B\omega+4A=-1$$

$$B\omega^2-3A\omega+4B=0$$

Solving the first equation for $A$, we obtain:

$$A=-\frac{1+3B\omega}{\omega^2+4}$$

Substituting into the second, we obtain:

$$B\omega^2+3\frac{1+3B\omega}{\omega^2+4}\omega+4B=0$$

$$B\omega^2\left(\omega^2+4\right)+3\omega(1+3B\omega)+4B\left(\omega^2+4\right)=0$$

$$B\omega^4+17B\omega^2+16B=-3\omega$$

$$B\left(\omega^2+1\right)\left(\omega^2+16\right)=-3\omega$$

$$B=-\frac{3\omega}{\left(\omega^2+1\right)\left(\omega^2+16\right)}$$

And so we then obtain:

$$A=-\frac{1+3\left(-\dfrac{3\omega}{\left(\omega^2+1\right)\left(\omega^2+16\right)}\right)\omega}{\omega^2+4}$$

$$A=-\frac{\left(\omega^2+1\right)\left(\omega^2+16\right)-9\omega^2}{\left(\omega^2+4\right)\left(\omega^2+1\right)\left(\omega^2+16\right)}=-\frac{\left(\omega^2+4\right)^2}{\left(\omega^2+4\right)\left(\omega^2+1\right)\left(\omega^2+16\right)}=-\frac{\omega^2+4}{\left(\omega^2+1\right)\left(\omega^2+16\right)}$$

And so we find we agree with W|A, which is generally a good thing. :)
 
MarkFL said:
And so we find we agree with W|A, which is generally a good thing. :)

Thanks Mark, found my error.

What does W|A mean please?
 
ognik said:
Thanks Mark, found my error.

What does W|A mean please?

It is an abbreviation for Wolfram Alpha, a free online CAS that I use to check my results:

W|A y''+3y'-4y=sin(a*t)

:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
28
Views
6K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K