Plotting Graphs with Domain & Range as Integers

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Maple
Dustinsfl
Messages
2,217
Reaction score
5
I am trying to plot a graph with the domain and range as integers. So instead of a continuous function, I will have points only plotted on the integers.

Does anyone know how to do this?
 
Physics news on Phys.org
Graphs
The plot command may be used to plot simple graphs,
plot( x^3, x=-3..3); ......

Read http://www.rose-hulman.edu/~rickert/Classes/ma111/maple1.html"
 
Last edited by a moderator:
Those will yield all continuous graphs. The domain and range of the function I am using are integers not real numbers so I need a calling method that will only plot at the integers.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top