MHB Point (a, b) Reflected About Two Lines

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Lines Point
mathdad
Messages
1,280
Reaction score
0
This question is found in the challenge section of the textbook. This is a two-part question. Like always, I am looking for steps or hints that will allow me to work out the math.

1. If the point (a, b) is reflected in the line y = 3x, show that the coordinates of the reflected points are as follows:

[(3b - 4a)/5, (3a + 4b)/5]

2. If the point (a, b) is reflected in the line y = mx, what are the coordinates of the reflected point?
 
Mathematics news on Phys.org
RTCNTC said:
This question is found in the challenge section of the textbook. This is a two-part question. Like always, I am looking for steps or hints that will allow me to work out the math.

1. If the point (a, b) is reflected in the line y = 3x, show that the coordinates of the reflected points are as follows:

[(3b - 4a)/5, (3a + 4b)/5]

2. If the point (a, b) is reflected in the line y = mx, what are the coordinates of the reflected point?
What have you tried?

-Dan
 
Let's generalize the method I posted http://mathhelpboards.com/pre-calculus-21/reflection-about-y-x-20690-post94058.html#post94058 to reflect a given point $(a,b)$ about the line $y=mx+k$, where ($m\ne0$). We will call the reflected point $(a',b')$.

First, we want the distance $d$ between the given point and the line:

$$d=\frac{|ma+k-b|}{\sqrt{m^2+1}}$$

So, we know $(a'b')$ must lie along the line:

$$y=-\frac{1}{m}(x-a)+b$$

Hence:

$$mb'-mb=a-a'\tag{1}$$

We also know the distance from $(a'b')$ to the line must be $d$, so we have:

$$d=\frac{|ma'+k-b'|}{\sqrt{m^2+1}}$$

Thus, we want to look at (to ensure the two points are distinct):

$$ma+k-b=-ma'-k+b'$$

$$b+b'-k=ma+ma'+k\tag{2}$$

From (1), we find:

$$b'=\frac{mb+a-a'}{m}$$

And from (2):

$$b'=ma+ma'-b+2k$$

Hence:

$$\frac{mb+a-a'}{m}=ma+ma'-b+2k$$

Solving for $a'$, there results:

$$a'=\frac{(1-m^2)a+2m(b-k)}{m^2+1}$$

And so plugging this value into either expression for $b'$ above gives us (after simplification):

$$b'=\frac{(m^2-1)b+2(ma+k)}{m^2+1}$$

Now we have a general formula. (Clapping)

In the given problem, we have $m=3$ and $k=0$, thus:

$$a'=\frac{(1-3^2)a+2(3)(b-0)}{3^2+1}=\frac{-8a+6b}{10}=\frac{3b-4a}{5}$$

$$b'=\frac{(3^2-1)b+2((3)a+0)}{3^2+1}=\frac{8b+6a}{10}=\frac{4b+3a}{5}$$
 
MarkFL said:
Let's generalize the method I posted http://mathhelpboards.com/pre-calculus-21/reflection-about-y-x-20690-post94058.html#post94058 to reflect a given point $(a,b)$ about the line $y=mx+k$, where ($m\ne0$). We will call the reflected point $(a',b')$.

First, we want the distance $d$ between the given point and the line:

$$d=\frac{|ma+k-b|}{\sqrt{m^2+1}}$$

So, we know $(a'b')$ must lie along the line:

$$y=-\frac{1}{m}(x-a)+b$$

Hence:

$$mb'-mb=a-a'\tag{1}$$

We also know the distance from $(a'b')$ to the line must be $d$, so we have:

$$d=\frac{|ma'+k-b'|}{\sqrt{m^2+1}}$$

Thus, we want to look at (to ensure the two points are distinct):

$$ma+k-b=-ma'-k+b'$$

$$b+b'-k=ma+ma'+k\tag{2}$$

From (1), we find:

$$b'=\frac{mb+a-a'}{m}$$

And from (2):

$$b'=ma+ma'-b+2k$$

Hence:

$$\frac{mb+a-a'}{m}=ma+ma'-b+2k$$

Solving for $a'$, there results:

$$a'=\frac{(1-m^2)a+2m(b-k)}{m^2+1}$$

And so plugging this value into either expression for $b'$ above gives us (after simplification):

$$b'=\frac{(m^2-1)b+2(ma+k)}{m^2+1}$$

Now we have a general formula. (Clapping)

In the given problem, we have $m=3$ and $k=0$, thus:

$$a'=\frac{(1-3^2)a+2(3)(b-0)}{3^2+1}=\frac{-8a+6b}{10}=\frac{3b-4a}{5}$$

$$b'=\frac{(3^2-1)b+2((3)a+0)}{3^2+1}=\frac{8b+6a}{10}=\frac{4b+3a}{5}$$
Thank you very much. Great work!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top