Pointwise and uniform convergence

Click For Summary

Discussion Overview

The discussion revolves around the pointwise and uniform convergence of various sequences and series of functions, specifically focusing on functions defined on intervals such as [0, ∞) and (0, 1). Participants explore definitions, convergence criteria, and specific cases, raising questions about the correctness of their reasoning and calculations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Participants discuss the pointwise convergence of the sequence of functions \( f_n(x) = xe^{-nx} \) and \( f_n(x) = nxe^{-nx} \), concluding that both converge to 0 for \( x \in [0, \infty) \).
  • There is uncertainty regarding the uniform convergence of these sequences, with participants questioning how to proceed after establishing pointwise convergence.
  • For the function \( f_n(x) = \sqrt[n]{n^2x} \), participants debate whether the limit as \( n \) approaches infinity equals 1 for \( x \in (0, 1] \) and whether the convergence is uniform.
  • Participants explore the series \( \sum_{n=1}^{\infty} \frac{1}{nx - n^2} \) and whether it converges uniformly using the Weierstrass criterion, with some suggesting that it converges uniformly based on comparisons to known convergent series.
  • In discussing the series \( \sum_{n=0}^{\infty} \frac{\sin(x)}{(1+x^4)^n} \), participants analyze pointwise convergence and consider the implications of continuity of the limit function for uniform convergence.
  • There is a discussion about the continuity of limit functions and how it relates to uniform convergence, particularly in cases where the limit function is not continuous at certain points.

Areas of Agreement / Disagreement

Participants express various viewpoints on the convergence of the sequences and series, with no consensus reached on several points, particularly regarding uniform convergence and the continuity of limit functions. Some participants agree on certain aspects of pointwise convergence, but the discussion remains unresolved on uniform convergence criteria.

Contextual Notes

Participants highlight the importance of definitions and criteria for convergence, noting that assumptions about continuity and the behavior of functions at specific points (like \( x = 0 \)) are critical in determining convergence types. There are also unresolved mathematical steps in some arguments, particularly regarding the application of convergence tests.

Who May Find This Useful

This discussion may be useful for students and practitioners in mathematics and related fields who are interested in understanding the nuances of convergence in sequences and series of functions, particularly in the context of analysis.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to check the pointwise and uniform convergence for the following sequences or series of functions:
  1. $f_n:[0, \infty)\rightarrow \mathbb{R}, f_n(x)=xe^{-nx}$ for all $n\in \mathbb{N}$
  2. $f_n:[0, \infty)\rightarrow \mathbb{R}, f_n(x)=nxe^{-nx}$ for all $n\in \mathbb{N}$
  3. $f_n:[0, 1]\rightarrow \mathbb{R}, f_n(x)=\sqrt[n]{n^2x}$ for all $n\in \mathbb{N}$
  4. $\displaystyle{\sum_{n=1}^{\infty}\frac{1}{nx-n^2}}$ for $x\in (0,1)$
  5. $\displaystyle{\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}}$ for $x\in \mathbb{R}$

We have the following:
  • The sequence of functions $(f_n)$ is on $D$ pointwise convergent iff for each $x\in D$ the sequence $(f_n(x))$ is convergent.
  • The series of functions $\displaystyle{\sum_{n=1}^{\infty}f_n}$ is on $D$ pointwise konvergent iff for each $x\in D$ the sequence $(s_n(x))$ is convergent.
  • $(f_n)$ converges on $D$ uniformly to $f: D\rightarrow \mathbb{R}$ iff $\forall \epsilon>0 \ \exists n_0=n_0(\epsilon)\in \mathbb{N}\ \ \forall n\geq n_0 \ \ \forall x\in D: |f_n(x)-f(x)|<\epsilon$.
  • $\displaystyle{\sum_{n=1}^{\infty}f_n}$ converges on $D$ uniformly to $f: D\rightarrow \mathbb{R}$ iff $\forall \epsilon>0 \ \exists n_0=n_0(\epsilon)\in \mathbb{N}\ \ \forall n\geq n_0 \ \ \forall x\in D: |s_n(x)-f(x)|<\epsilon$.

I have done the following:
  1. We have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow\infty}\frac{x}{e^{nx}}=0$$
    For each $x\in [0, \infty)$ the sequence $(f_n(x))$ converges. So the sequence of function $(f_n)$ converges on $[0,\infty)$ pointwise to $f$.

    To check the uniform convergence we have that $|f_n(x)-f(x)|=\frac{x}{e^{nx}}$. What do we do next? (Wondering)
  2. We have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow\infty}\frac{nx}{e^{nx}}=\lim_{n\rightarrow\infty}\frac{nx}{\frac{\sum_{k=1}^{\infty}(nx)^k}{k!}}=\sum_{k=1}^{\infty}\frac{xk!}{\lim_{n\rightarrow \infty}\left (\frac{nx}{n}+\sum_{k=2}^{\infty}(nx)^{k-1}\right )}=0$$ Is this correct? (Wondering)
    For each $x\in [0, \infty)$ the sequence $(f_n(x))$ converges. So the sequence of function $(f_n)$ converges on $[0,\infty)$ pointwise to $f$.

    To check the uniform convergence we have that $|f_n(x)-f(x)|=\frac{nx}{e^{nx}}$. How could we continue? (Wondering)
  3. We have that when $x=0$ then $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow \infty}\sqrt[n]{n^2\cdot 0}=0$$
    When $x\in (0,1]$ we have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow \infty}\sqrt[n]{n^2x}$$ Is this equal to $1$ ? (Wondering)

For the cases 4. and 5. do we use the Weierstrass criterium? Or do we use the definition? (Wondering)
 
Physics news on Phys.org
For the case 5. :

We have that for $x\neq 0$ :
$$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=\sin (x)\sum_{n=0}^{\infty}\left (\frac{1}{1+x^4}\right )^n=\sin (x)\frac{1}{1-\frac{1}{1+x^4}}=\sin (x)\frac{1+x^4}{1+x^4-1}=\sin (x)\frac{1+x^4}{x^4}$$
and for $x=0$ : $$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=0$$

What do we get from that about the pointwise and uniform convergence? (Wondering)
 
Last edited by a moderator:
mathmari said:
For the case 5. :

We have that for $x\neq 0$ :
$$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=\sin (x)\sum_{n=0}^{\infty}\left (\frac{1}{1+x^4}\right )^n=\sin (x)\frac{1}{1-\frac{1}{1+x^4}}=\sin (x)\frac{1+x^4}{1+x^4-1}=\sin (x)\frac{1+x^4}{x^4}$$
and for $x=0$ : $$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=0$$

What do we get from that about the pointwise and uniform convergence? (Wondering)
That's good, and it tells you that the series converges pointwise.

To decide about uniform convergence, there are two useful techniques. The Weierstrass M-test is the most useful tool to prove that a series converges uniformly. To show that a series does not converge uniformly, it often helps to use the theorem that a uniformly convergent sequence or series of continuous functions has a continuous limit. So if each term in a sequence or series is continuous but the (pointwise) limit function is not continuous, then the convergence cannot be uniform.
 
Opalg said:
That's good, and it tells you that the series converges pointwise.

To decide about uniform convergence, there are two useful techniques. The Weierstrass M-test is the most useful tool to prove that a series converges uniformly. To show that a series does not converge uniformly, it often helps to use the theorem that a uniformly convergent sequence or series of continuous functions has a continuous limit. So if each term in a sequence or series is continuous but the (pointwise) limit function is not continuous, then the convergence cannot be uniform.

According to the definition of pointwise convergence of a series of functions we have to check if $s_k$ converges for each $x$.

So, we have that for $x\neq 0$ :
$$s_k=\sum_{n=0}^{k}\frac{\sin (x)}{(1+x^4)^n}=\sin (x)\sum_{n=0}^{k}\left (\frac{1}{1+x^4}\right )^n=\sin (x)\frac{1-\left (\frac{1}{1+x^4}\right )^{k+1}}{1-\frac{1}{1+x^4}}=\sin (x)\frac{1-\frac{1}{(1+x^4)^{k+1}}}{1-\frac{1}{1+x^4}}=\sin (x)\frac{(1+x^4)^{k+1}-1}{(1+x^4)^{k+1}-(1+x^4)^k}=\frac{\sin (x)}{(1+x^4)^k}\left (\frac{(1+x^4)^{k+1}-1}{1+x^4-1}\right )=\frac{\sin (x)}{x^4(1+x^4)^k}\left ((1+x^4)^{k+1}-1\right )$$
and for $x=0$ we have : $s_k=\sum_{n=0}^{k}\frac{\sin (x)}{(1+x^4)^n}=0$.

So, in each case $s_k$ is convergent. Therefore, $\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}$ convergence pointwise.

Is this correct? (Wondering)
mathmari said:
For the case 5. :

We have that for $x\neq 0$ :
$$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=\sin (x)\sum_{n=0}^{\infty}\left (\frac{1}{1+x^4}\right )^n=\sin (x)\frac{1}{1-\frac{1}{1+x^4}}=\sin (x)\frac{1+x^4}{1+x^4-1}=\sin (x)\frac{1+x^4}{x^4}$$
and for $x=0$ : $$\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}=0$$

We have that $\frac{\sin (x)}{(1+x^4)^n}$ is continuous as a fraction of continuous functions, right? (Wondering)
To check if the limit function is continuous we have to check it at $x=0$ :
We have that $$\lim_{x\rightarrow 0}\sin (x)\frac{1+x^4}{x^4}=\lim_{x\rightarrow 0}\sin (x)\left (\frac{1}{x^4}+1\right )=\lim_{x\rightarrow 0}\frac{\sin (x)}{x^4}+\lim_{x\rightarrow 0}\sin (x)=\lim_{x\rightarrow 0}\frac{\sin (x)}{x}\frac{1}{x^3}=1\cdot \infty=\infty\neq 0$$

So, it is not continuous at $x=0$, and therefore the series does not converge uniformly. Is this correct? (Wondering)
 
For 4. we have the following:

Since $0<x<1\Rightarrow 0<nx<n\Rightarrow -n<-nx<0\Rightarrow n^2-n<n^2-nx<n^2$ we have that $$\frac{1}{n^2-nx}<\frac{1}{n^2-n}=\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}$$

Since the series $\sum_{n=2}^{\infty}\left (\frac{1}{n-1}-\frac{1}{n}\right )$ converges, we have from the Weierstrass criterion that the sum $\sum_{n=2}^{\infty}\frac{1}{nx-n^2}$ converges uniformly.

So, the series $\sum_{n=1}^{\infty}\frac{1}{nx-n^2}=\frac{1}{x-1}+\sum_{n=2}^{\infty}\frac{1}{nx-n^2}$ converges also uniformly.
And from that it follows that the series converges also pointwise.
Is this correct? (Wondering)

Or dowe have to take into consideration that if $x\rightarrow 1$ then $\rightarrow \infty$ ? (Wondering)
 
Last edited by a moderator:
For the case 1. I have done the following:

From the definition ofthe exponential function we have that $e^{nx}=\sum_{k=1}^{\infty}\frac{(nx)^k}{k!}\geq \frac{(nx)^2}{2}$. So, $\frac{1}{e^{nx}}\leq \frac{2}{n^2x^2}$.

Therefore, we have that \begin{equation*}|f_n(x)-f(x)|=\left |\frac{x}{e^{nx}}\right |=\frac{x}{e^{nx}}\leq \frac{2x}{n^2x^2}=\frac{2}{n^2}\end{equation*}

It holds that $\lim_{n\rightarrow \infty}\frac{2}{n^2} =0$.

So, $(f_n)$ converges uniformly.
For the case 3. I have done the following:

The limit function is \begin{equation*}f(x)=\left\{\begin{matrix}
0 & x=0\\
1 & x \in (0,1]
\end{matrix}\right.\end{equation*}

We have that $\sqrt[n]{n^2x}$ is continuous, or not? (Wondering)

We have that \begin{equation*}\lim_{x\rightarrow 0}f(x)=1\neq 0\end{equation*}

So, $f$ is not continuous at $x=0$ and therefore $(f_n)$ does not converge uniformly. Is everything correct? (Wondering) Could you give me a hint for the case 2. ? (Wondering)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K