MHB Pointwise Convergence .... Abbott, Example 6.2.2 (iii) .... ....

Click For Summary
The discussion centers on understanding pointwise convergence in the context of Example 6.2.2 (iii) from Stephen Abbott's "Understanding Analysis." The example demonstrates that as n approaches infinity, the limit of \( x^{\frac{1}{2n-1}} \) converges to different values based on the sign of x: it approaches 1 for positive x, -1 for negative x, and 0 for x equal to 0. The mechanics involve recognizing that the exponent \( \frac{1}{2n-1} \) leads to odd roots, affecting the convergence behavior. Overall, the limit expression simplifies to \( |x| \) for x within the interval [-1, 1].
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Stephen Abbott's book: "Understanding Analysis" (Second Edition) ...

I am focused on Chapter 6: Sequences and Series of Functions ... and in particular on pointwise convergence...

I need some help to understand the 'mechanics' of Example 6.2.2 (iii) ...

Example 6.2.2 reads as follows:View attachment 8580In the above text from Abbott, in Example 6.2.2 (iii), we read the following:


" ... ... $\displaystyle \lim_{n \to \infty }$ $$h_n (x) = x$$ $\displaystyle \lim_{n \to \infty }$ $$ x^{ \frac{1}{ 2n -1 } } = \ \mid x \mid $$ ... ... "

Can someone please explain exactly how ...$$x $$ $\displaystyle \lim_{n \to \infty }$ $$ x^{ \frac{1}{ 2n -1 } } = \ \mid x \mid $$ ... ... "
Peter
 

Attachments

  • Abbott - Example 6.2.2 (iii) .png
    Abbott - Example 6.2.2 (iii) .png
    25.5 KB · Views: 146
Physics news on Phys.org
Peter said:
I am reading Stephen Abbott's book: "Understanding Analysis" (Second Edition) ...

I am focused on Chapter 6: Sequences and Series of Functions ... and in particular on pointwise convergence...

I need some help to understand the 'mechanics' of Example 6.2.2 (iii) ...

Example 6.2.2 reads as follows:In the above text from Abbott, in Example 6.2.2 (iii), we read the following:


" ... ... $\displaystyle \lim_{n \to \infty }$ $$h_n (x) = x$$ $\displaystyle \lim_{n \to \infty }$ $$ x^{ \frac{1}{ 2n -1 } } = \ \mid x \mid $$ ... ... "

Can someone please explain exactly how ...$$x $$ $\displaystyle \lim_{n \to \infty }$ $$ x^{ \frac{1}{ 2n -1 } } = \ \mid x \mid $$ ... ... "
Peter

Keep in mind that $x\in[-1,1]$. Note that
\[\lim_{n\to\infty} x^{\frac{1}{2n-1}}=\begin{cases}-1, & x\in[-1,0),\\ 0, & x=0,\\ 1, & x\in(0,1].\end{cases}\]
So in the end, we find that
\[x\lim_{n\to\infty}x^{\frac{1}{2n-1}} = \begin{cases}x, & x\geq 0,\\ -x,& x<0\end{cases} = |x|.\]
I hope this makes sense!
 
Chris L T521 said:
Keep in mind that $x\in[-1,1]$. Note that
\[\lim_{n\to\infty} x^{\frac{1}{2n-1}}=\begin{cases}-1, & x\in[-1,0),\\ 0, & x=0,\\ 1, & x\in(0,1].\end{cases}\]
So in the end, we find that
\[x\lim_{n\to\infty}x^{\frac{1}{2n-1}} = \begin{cases}x, & x\geq 0,\\ -x,& x<0\end{cases} = |x|.\]
I hope this makes sense!
Thanks Chris ...

... just a clarification ...

How did you determine that

$$\lim_{n\to\infty} x^{\frac{1}{2n-1}} = -1, \ \ \text{ for } \ \ x\in [-1,0)$$

and

$$\lim_{n\to\infty} x^{\frac{1}{2n-1}} = 1, \ \ \text{ for } \ \ x \in (0,1]$$ ...Do you just have to know these limits ... ?PeterPS I'm particularly curious about the case where x is negative ...
 
Peter said:
Thanks Chris ...

... just a clarification ...

How did you determine that

$$\lim_{n\to\infty} x^{\frac{1}{2n-1}} = -1, \ \ \text{ for } \ \ x\in [-1,0)$$

and

$$\lim_{n\to\infty} x^{\frac{1}{2n-1}} = 1, \ \ \text{ for } \ \ x \in (0,1]$$ ...Do you just have to know these limits ... ?PeterPS I'm particularly curious about the case where x is negative ...

The power on $x$ is $\frac{1}{2n-1}$ which implies these are odd radicals for $n\geq 2$ (when $n=1$, the expression is just $x$). So if $x>0$, $x^{\frac{1}{2n-1}}>0$ and since $\frac{1}{2n-1}\rightarrow 0$ as $n\rightarrow\infty$, we find that $x^{\frac{1}{2n-1}}\rightarrow 1$ (since $a^0=1$ for $a\neq 0$).

On the other hand, when $x<0$, we can factor negatives out of odd radicals, so we find that $x^{\frac{1}{2n-1}}=-(-x)^{\frac{1}{2n-1}}<0$. Since $x<0\implies -x>0$, we find that as $n\to\infty$, $x^{\frac{1}{2n-1}}=-(-x)^{\frac{1}{2n-1}}\rightarrow -1$ for $x<0$ (note that $(-x)^{\frac{1}{2n-1}}\rightarrow 1$ as $n\rightarrow \infty$ by similar reasoning in the previous paragraph).

I hope this clarifies things!
 
Last edited:
Chris L T521 said:
The power on $x$ is $\frac{1}{2n-1}$ which implies these are odd radicals for $n\geq 2$ (when $n=1$, the expression is just $x$). So if $x>0$, $x^{\frac{1}{2n-1}}>0$ and since $\frac{1}{2n-1}\rightarrow 0$ as $n\rightarrow\infty$, we find that $x^{\frac{1}{2n-1}}\rightarrow 1$ (since $a^0=1$ for $a\neq 0$).

On the other hand, when $x<0$, we can factor negatives out of odd radicals, so we find that $x^{\frac{1}{2n-1}}=-(-x)^{\frac{1}{2n-1}}<0$. Since $x<0\implies -x>0$, we find that as $n\to\infty$, $x^{\frac{1}{2n-1}}=-(-x)^{\frac{1}{2n-1}}\rightarrow -1$ for $x<0$ (note that $(-x)^{\frac{1}{2n-1}}\rightarrow 1$ as $n\rightarrow \infty$ by similar reasoning in the previous paragraph).

I hope this clarifies things!
Very clear thanks Chris ...

Your help is much appreciated ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K