Pointwise convergence implies uniform convergence

Click For Summary
SUMMARY

The theorem states that if a sequence of functions \( f_n: [0,1] \to \mathbb{R} \) is equicontinuous and converges pointwise to a function \( f \), then it converges uniformly to \( f \). The definitions of pointwise convergence, uniform convergence, and equicontinuity are provided. The proof involves constructing open sets \( U_k \) and using compactness to establish uniform convergence. Additionally, the discussion highlights a misstatement regarding the definition of equicontinuity, which should be uniformly equicontinuous.

PREREQUISITES
  • Understanding of pointwise convergence and uniform convergence in real analysis.
  • Knowledge of equicontinuity and its implications for function sequences.
  • Familiarity with compactness in metric spaces, particularly the interval [0,1].
  • Basic understanding of Ascoli's theorem and its application in functional analysis.
NEXT STEPS
  • Study the proof of Ascoli's theorem and its applications in real analysis.
  • Explore the differences between equicontinuity and uniform equicontinuity in detail.
  • Learn about compactness and its role in convergence of function sequences.
  • Investigate examples of pointwise and uniform convergence in various function spaces.
USEFUL FOR

Mathematics students, particularly those studying real analysis, functional analysis, and anyone interested in the properties of function sequences and convergence.

Siron
Messages
148
Reaction score
0
Hi,

I have to prove the following theorem:

Let $f_n:[0,1] \to \mathbb{R}, \forall n \geq 1$ and suppose that $\{f_n|n \in \mathbb{N}\}$ is equicontinuous. If $f_n \to f$ pointwise then $f_n \to f$ uniformly.

Before I start the proof I'll put the definitions here:
$f_n \to f$ pointwise if and only if $\forall \epsilon>0, \forall x \in X, \exists N \in \mathbb{N}$ such that $\forall n \geq N: |f_n(x)-f(x)|<\epsilon$
$f_n \to f$ uniformly if and only if $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall x \in X: |f_n(x)-f(x)|<\epsilon$
$\{f_n|n \in \mathbb{N}\}$ equicontinuous if and only if $\forall \epsilon>0, \exists \delta>0, \forall n \in \mathbb{N}: |x-y|<\delta \Rightarrow |f_n(x)-f_n(y)|<\epsilon$
Attempt:
Let $\epsilon>0$ and define the sets $U_k=\{x \in [0,1]||f_n(x)-f(x)|<\epsilon, \forall n \geq k\}$ then I claim $U_k$ are open sets and hence because of the pointwise convergence of $f_n \to f$ they form an open covering for $[0,1]$. Since $[0,1]$ is compact there exists a finite subcover, that is, $\exists k_1,\ldots,k_n \in \mathbb{N}$ such that $[0,1] \subset \bigcup_{j=1}^{n} U_{k_j}$. We can assume that $k_1\leq k_2\leq \ldots \leq k_n$ and since $U_{k_j} \subseteq U_{k_1}, \forall j \geq 1$ I conclude $[0,1] \subseteq U_{k_1}$, i.e $\exists k_1 \in \mathbb{N}: \forall x \in X: |f_n(x)-f(x)|<\epsilon, \forall n \geq K$ which means $f_n \to f$ uniformly.

Is this proof correct? If yes, I'll show my proof for the claim: $U_k$ is open which follows by the equicontinuity.

Is there a way to show the statement by using Ascoli's theorem?Thanks in advance!
Cheers.
 
Physics news on Phys.org
From mathwonk:

This seems to be a standard application of ascoli's theorem, as explained in wikipedia.

one remark, the questioner had misstated the definition of equicontinuous, giving instead the definition of uniformly equicontinuous.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K