MHB Polynomial of degree 3. splitting field.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
If $F$ is the field of rational numbers, find the necessary and sufficient conditions on $a$ and $b$ so that the splitting field of $p(x)=x^3+ax+b=0$ has degree exactly $3$ over $F$.

ATTEMPT:
If $p(x)$ is not irreducible in $F[x]$ then the splitting field of $p(x)$ over $F$ can have degree $2!=2$ over $F$.
Thus $p(x)$ should have no rational roots.
Now.
Claim: $p(x)$ should not have any complex root (in the field of complex numbers).
Proof: Suppose it did. Say $\alpha$ is a complex root of $p(x)$. Now since $p(x)$ is a polynomial of degree three it has at least one real root say $a$. Let $E$ be the splitting field of $p(x)$ over $F$. Then $[F(a):F]$ divides $[E:F]=3$. $[F(a):F] \neq 1$ since $p(x)$ is irreducible in $F[x]$. Thus $[F(a):F]=3$. Clearly $\alpha \not \in F(a)$. Thus $[F(a, \alpha):F] > [F(a):F]$. Since $[F(a, \alpha):F]$ divides $[E:F]$, it follows that $[E;F]> [F(a):F]=3$.

So all three roots of $p(x)$ in the field of complex numbers are real.

Now what do I do?
 
Physics news on Phys.org
have you considered looking at the discriminant? in this case $\Delta = -4a^3 - 27b^2$. now argue that $\Delta < 0$ and $\sqrt{-\Delta}$ is rational (you might want to consider the vieta substitution:

$$x = w - \frac{a}{3w}$$

to see where I'm coming from).
 
Deveno said:
have you considered looking at the discriminant? in this case $\Delta = -4a^3 - 27b^2$. now argue that $\Delta < 0$ and $\sqrt{-\Delta}$ is rational (you might want to consider the vieta substitution:

$$x = w - \frac{a}{3w}$$

to see where I'm coming from).
I don't know what the discriminant is in case of cubic equation.
I didn't know that the question requires that knowledge.
But thanks for your post Denevo. I will attempt this question again after reading more about the cubic.
 
use the substitution i mentioned, and then multiply through by $w^3$. you should get a quadratic in $w^3$. what are the conditions that a quadratic has two real rational roots?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top