Polynomial of degree 3. splitting field.

Click For Summary
SUMMARY

The discussion focuses on determining the necessary and sufficient conditions on coefficients \(a\) and \(b\) for the polynomial \(p(x) = x^3 + ax + b\) to have a splitting field of degree exactly 3 over the field of rational numbers \(F\). It is established that \(p(x)\) must be irreducible in \(F[x]\) and must have all real roots, which can be analyzed using the discriminant \(\Delta = -4a^3 - 27b^2\). Specifically, the condition \(\Delta < 0\) ensures that the polynomial has one real root and two complex conjugate roots, while the rationality of \(\sqrt{-\Delta}\) is also crucial for the degree of the splitting field.

PREREQUISITES
  • Understanding of polynomial irreducibility in \(F[x]\)
  • Knowledge of discriminants for cubic equations
  • Familiarity with Vieta's formulas and substitutions
  • Basic concepts of field theory and splitting fields
NEXT STEPS
  • Study the properties of cubic polynomials and their discriminants
  • Learn about the implications of irreducibility in field extensions
  • Research Vieta's substitution and its applications in polynomial roots
  • Explore the relationship between the discriminant and the nature of polynomial roots
USEFUL FOR

Mathematicians, algebra students, and anyone interested in field theory and polynomial equations, particularly those studying cubic polynomials and their properties in relation to rational coefficients.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
If $F$ is the field of rational numbers, find the necessary and sufficient conditions on $a$ and $b$ so that the splitting field of $p(x)=x^3+ax+b=0$ has degree exactly $3$ over $F$.

ATTEMPT:
If $p(x)$ is not irreducible in $F[x]$ then the splitting field of $p(x)$ over $F$ can have degree $2!=2$ over $F$.
Thus $p(x)$ should have no rational roots.
Now.
Claim: $p(x)$ should not have any complex root (in the field of complex numbers).
Proof: Suppose it did. Say $\alpha$ is a complex root of $p(x)$. Now since $p(x)$ is a polynomial of degree three it has at least one real root say $a$. Let $E$ be the splitting field of $p(x)$ over $F$. Then $[F(a):F]$ divides $[E:F]=3$. $[F(a):F] \neq 1$ since $p(x)$ is irreducible in $F[x]$. Thus $[F(a):F]=3$. Clearly $\alpha \not \in F(a)$. Thus $[F(a, \alpha):F] > [F(a):F]$. Since $[F(a, \alpha):F]$ divides $[E:F]$, it follows that $[E;F]> [F(a):F]=3$.

So all three roots of $p(x)$ in the field of complex numbers are real.

Now what do I do?
 
Physics news on Phys.org
have you considered looking at the discriminant? in this case $\Delta = -4a^3 - 27b^2$. now argue that $\Delta < 0$ and $\sqrt{-\Delta}$ is rational (you might want to consider the vieta substitution:

$$x = w - \frac{a}{3w}$$

to see where I'm coming from).
 
Deveno said:
have you considered looking at the discriminant? in this case $\Delta = -4a^3 - 27b^2$. now argue that $\Delta < 0$ and $\sqrt{-\Delta}$ is rational (you might want to consider the vieta substitution:

$$x = w - \frac{a}{3w}$$

to see where I'm coming from).
I don't know what the discriminant is in case of cubic equation.
I didn't know that the question requires that knowledge.
But thanks for your post Denevo. I will attempt this question again after reading more about the cubic.
 
use the substitution i mentioned, and then multiply through by $w^3$. you should get a quadratic in $w^3$. what are the conditions that a quadratic has two real rational roots?
 

Similar threads

Replies
48
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K