Possible energy values given Hamiltonian

Click For Summary
SUMMARY

The discussion centers on calculating the eigenvalues of a Hamiltonian matrix represented as $$ H = \begin{pmatrix} a & b \\ b & c \end{pmatrix} $$ using the determinant method. The correct approach involves solving the characteristic polynomial $$ det(H - \lambda I) = 0 $$, leading to the eigenvalue equation $$ \lambda = \frac{a+c}{2} \pm \sqrt{( \frac{a+c}{2} )^2 - (ac-b^2)} $$. Participants emphasize the importance of correctly identifying the eigenvalues of the matrix H rather than H - λI, and suggest simplifying the expression under the square root for clarity.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically eigenvalues and eigenvectors.
  • Familiarity with matrix determinants and characteristic polynomials.
  • Knowledge of Hamiltonian mechanics and its representation in matrix form.
  • Proficiency in solving quadratic equations and manipulating algebraic expressions.
NEXT STEPS
  • Study the derivation of eigenvalues for 2x2 matrices in linear algebra.
  • Learn about the implications of eigenvalues in quantum mechanics and Hamiltonian systems.
  • Explore simplification techniques for algebraic expressions under square roots.
  • Investigate numerical methods for approximating eigenvalues in larger matrices.
USEFUL FOR

Students and professionals in physics, particularly those focused on quantum mechanics, as well as mathematicians and engineers working with linear algebra and matrix theory.

Rayan
Messages
17
Reaction score
1
Homework Statement
The Hamiltonian for a two level system with the orthonormal states |1⟩ and |2⟩ is given by:
Relevant Equations
H = a|1⟩⟨1| + b|1⟩⟨2| + b|2⟩⟨1| + c|2⟩⟨2| ,

where a,b and c are real constants with energy unit.
So first I rewrote H as a matrix:

$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$

And tried to find the eigenvalues/energies of H, so I solved

$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$

but got a complicated solution

$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$

What am I doing wrong here?
 
Last edited:
Physics news on Phys.org
Rayan said:
So first I rewrote H as a matrix:

$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$
Ok.

Rayan said:
And tried to find the eigenvalues/energies of

$$ H - \lambda I $$
Terminology: You want the eigenvalues of ##H##, not ##H - \lambda I##.

Rayan said:
but got a complicated solution
$$ \lambda = \frac{a-c}{2} \pm \sqrt{ ( \frac{a-c}{2} )^2 - (ac-b^2) } $$
What am I doing wrong here?
It's hard to tell where you made the mistakes. Please show the steps in getting the quadratic equation for ##\lambda## and then the steps in solving for ##\lambda##.
 
TSny said:
Ok.Terminology: You want the eigenvalues of ##H##, not ##H - \lambda I##.It's hard to tell where you made the mistakes. Please show the steps in getting the quadratic equation for ##\lambda## and then the steps in solving for ##\lambda##.
You're right! I just updated my question with the steps!:)
 
Rayan said:
$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$
This looks good.

Rayan said:
but got a complicated solution

$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$
This looks correct.

My preference would be to write what you have as $$ \lambda = \frac{a+c}{2} \pm \frac1 2 \sqrt{ ((a+c)^2 - 4(ac-b^2) } $$
You should be able to simplify the expression inside the square root a little. (Work with the terms involving ##a## and ##c##.)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K