Possible energy values given Hamiltonian

Click For Summary

Homework Help Overview

The discussion revolves around finding the eigenvalues of a Hamiltonian represented as a matrix. Participants are exploring the mathematical process of determining these eigenvalues and addressing potential errors in their calculations.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to derive the eigenvalues from the determinant of the matrix representing the Hamiltonian. There are questions regarding the correct formulation of the determinant and the resulting quadratic equation for the eigenvalues.

Discussion Status

Some participants have provided feedback on the steps taken to find the eigenvalues, suggesting that the original poster clarify their calculations. There is an ongoing examination of the expressions derived, with suggestions for simplification and verification of the determinant setup.

Contextual Notes

Terminology and notation are being clarified among participants, indicating that there may be some confusion regarding the correct interpretation of the Hamiltonian and its eigenvalues.

Rayan
Messages
17
Reaction score
1
Homework Statement
The Hamiltonian for a two level system with the orthonormal states |1⟩ and |2⟩ is given by:
Relevant Equations
H = a|1⟩⟨1| + b|1⟩⟨2| + b|2⟩⟨1| + c|2⟩⟨2| ,

where a,b and c are real constants with energy unit.
So first I rewrote H as a matrix:

$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$

And tried to find the eigenvalues/energies of H, so I solved

$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$

but got a complicated solution

$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$

What am I doing wrong here?
 
Last edited:
Physics news on Phys.org
Rayan said:
So first I rewrote H as a matrix:

$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$
Ok.

Rayan said:
And tried to find the eigenvalues/energies of

$$ H - \lambda I $$
Terminology: You want the eigenvalues of ##H##, not ##H - \lambda I##.

Rayan said:
but got a complicated solution
$$ \lambda = \frac{a-c}{2} \pm \sqrt{ ( \frac{a-c}{2} )^2 - (ac-b^2) } $$
What am I doing wrong here?
It's hard to tell where you made the mistakes. Please show the steps in getting the quadratic equation for ##\lambda## and then the steps in solving for ##\lambda##.
 
TSny said:
Ok.Terminology: You want the eigenvalues of ##H##, not ##H - \lambda I##.It's hard to tell where you made the mistakes. Please show the steps in getting the quadratic equation for ##\lambda## and then the steps in solving for ##\lambda##.
You're right! I just updated my question with the steps!:)
 
Rayan said:
$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$
This looks good.

Rayan said:
but got a complicated solution

$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$
This looks correct.

My preference would be to write what you have as $$ \lambda = \frac{a+c}{2} \pm \frac1 2 \sqrt{ ((a+c)^2 - 4(ac-b^2) } $$
You should be able to simplify the expression inside the square root a little. (Work with the terms involving ##a## and ##c##.)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K