MHB Possible title: How do I solve this definite integral evaluation?

Click For Summary
The discussion focuses on evaluating the integral $$\int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$. The user transforms the integral using trigonometric identities and substitutions, ultimately expressing it in terms of a new variable, t. They seek assistance in solving the resulting integral $$-2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$$. A numerical approximation of this integral is provided, indicating a very small value. The user questions the limits of integration, suggesting potential confusion about the transformation process.
juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$

What I have Tried:: Let $$\displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$

So [math]\displaystyle I = \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{(\cos x)^{4018}\left[1+(\tan x)^{2009}\right]}\cdot 2^{2008}\cdot (\sin x)^{2008}\cdot (\cos x)^{208}dx[/math]

So $\displaystyle I = 2^{2008}\int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)\cdot (\tan x)^{2008}\cdot \sec^2 x}{\left[1+(\tan x)^{2009}\right]^2}dx\;,$

Now put $\tan x= t$ and $\sec^2 dx = dt$ and changing Limits , We get

$\displaystyle I = -2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$

Now How can I solve after that, Help me

Thanks
 
Physics news on Phys.org
The numerical value of the integral

$$\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$$

using wolframalpha is very small 1.71738×10^-7. Are you sure about the limits of the integration ?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K