Possible title: How do I solve this definite integral evaluation?

Click For Summary
SUMMARY

The discussion focuses on evaluating the definite integral $$\displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$. The user transforms the integral using the substitution $$\tan x = t$$, resulting in $$I = -2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$$. The numerical evaluation of this integral using WolframAlpha yields a very small value of approximately 1.71738×10^-7. The user seeks confirmation regarding the limits of integration.

PREREQUISITES
  • Understanding of definite integrals and logarithmic functions
  • Familiarity with trigonometric identities and transformations
  • Knowledge of integral calculus techniques, particularly substitution
  • Experience with numerical integration tools like WolframAlpha
NEXT STEPS
  • Study advanced techniques in integral calculus, focusing on logarithmic integrals
  • Learn about the properties of the cotangent function and its applications in integrals
  • Explore numerical integration methods and their accuracy in evaluating definite integrals
  • Investigate the behavior of integrals involving powers of trigonometric functions
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral evaluation techniques and numerical analysis.

juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$

What I have Tried:: Let $$\displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx$$

So [math]\displaystyle I = \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{(\cos x)^{4018}\left[1+(\tan x)^{2009}\right]}\cdot 2^{2008}\cdot (\sin x)^{2008}\cdot (\cos x)^{208}dx[/math]

So $\displaystyle I = 2^{2008}\int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)\cdot (\tan x)^{2008}\cdot \sec^2 x}{\left[1+(\tan x)^{2009}\right]^2}dx\;,$

Now put $\tan x= t$ and $\sec^2 dx = dt$ and changing Limits , We get

$\displaystyle I = -2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$

Now How can I solve after that, Help me

Thanks
 
Physics news on Phys.org
The numerical value of the integral

$$\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$$

using wolframalpha is very small 1.71738×10^-7. Are you sure about the limits of the integration ?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K