Sagittarius A-Star said:
In the first term of the right side of the equation I see an issue with units plausibility check (1+ ...). When I compare to the book "Lecture Notes on the General Theory of Relativity" from Gron, equation (4.47), also a square is missing there.
Proposal:
$$d\tau^2 = (1+ a\,x / c^2)^2dt^2 - \frac{1}{c^2} (dx^2 + dy^2 + dz^2)$$
From that, he derives a time dilation formula.
I think Rindler coordinates can be introduced most easily by defining it via a congruence of time-like world lines, considering points in constant proper acceleration along the ##x## axis of a Minkowski coordinate system ##(t,x,y,z)## with the world-line element
$$\mathrm{d}s^2=\eta_{\mu \nu} \mathrm{d}x^{\mu} \mathrm{d}^{\nu}=\mathrm{d} t^2-\mathrm{d} \vec{x}^2,$$
using natural units with ##c=1##. In the following we only need to consider the ##(t,x)## plane, because in the change to Rindler coordinate nothing happens with ##y## and ##z##. So we can set the corresponding new coordinates simply ##y=\eta## and ##z=\zeta##.
Then the congruence of timelike world lines in the planes parallel to the ##tx## plane is defined by the EoM. of observers starting with 0 velocity at ##x=\xi##. The solution in terms of a convenient affine parameter ##\lambda## is
$$t=\xi \sinh(\lambda \alpha), \quad x=\xi \cosh(\lambda \alpha).$$
That it's indeed an affine parameter is easily seen from
$$\dot{t}^2-\dot{x}^2=(\xi \alpha)^2,$$
and indeed ##\lambda## is the proper time of the observer on the worldline starting at ##\xi=1/\alpha##.
The line element in the Rindler coordinate ##(\lambda,\xi,\eta,\zeta)## is
$$\mathrm{d} s^2 =\xi^2 \alpha^2 \mathrm{d} \lambda^2-\mathrm{d} \vec{x}^{\prime 2}$$
with ##\vec{x}'=(\xi,\eta,\zeta)##.
The alternative form mentioned in #76 is also correct. It just defines ##\xi## differently with the initial point of the congruence of uniformly accelerated observers at ##x=0##:
$$t=(1/\alpha +\tilde{\xi}) \sinh(\alpha \lambda), \quad x=(1/\alpha+\tilde{\xi}) \cosh(\alpha \lambda)-1/\alpha$$
leading to the mentioned line element
$$\mathrm{d} s^2=(1+\alpha \tilde{\xi})^2 \mathrm{d} \lambda^2-\mathrm{d} \tilde{x}^2$$
where ##\tilde{x}^2=(\tilde{\xi},\eta,\zeta)##.