PeterDonis
Mentor
- 49,345
- 25,381
Buzz Bloom said:Suppose each of the tiny spherical dust particles had a charge such that that their electrostatic force established a pressure which maintained the static position of the shell. Then at t=0, the charge vanishes.
No, this won't work because it violates charge conservation. (It also violates conservation of the stress-energy tensor because there is stress-energy associated with the charge--the spacetime outside a charged shell is Reissner-Nordstrom spacetime, not Schwarzschild spacetime--it's a different solution of the EFE, although the two have many similarities.)
Buzz Bloom said:the concept is well defined in Newtonian physics in terms of the conservation of energy: potential plus kinetic equals zero.
That's because in Newtonian physics, space is always static, so there is always a well-defined meaning to potential energy.
Buzz Bloom said:Are you saying that the care required for solving a dynamic GR relationship about energy includes a need to consider states preceding the initial conditions at some t=0?
Not necessarily (but see below). I'm saying that in GR, there is no analogue in general to the absolute, static space of Newtonian physics. Only particular scenarios have an analogue to that, so only particular scenarios have a well-defined notion of potential energy.
In your scenario, if we view the shell as a self-contained, isolated system, then the region outside the shell's maximum radius is static, so it can serve to provide a well-defined notion of potential energy. The problem with that is that we then have to explain how the shell got to its condition at time t = 0, at rest at a given radius but with zero pressure. If it had pressure before t = 0 and so was static then, the pressure can't just vanish; that would violate the covariant divergence condition on the stress-energy tensor. If it didn't have pressure before t = 0, then it couldn't have been at the same radius; it must have been expanding outward before t = 0, reached maximum radius at t = 0, and then would start collapsing after t = 0 (like a rock thrown upward in a gravitational field at less than escape velocity--it reaches maximum height, stops, then starts falling again). But in that case, how did it come to be expanding outward? And even if we answer these questions, they won't give us an answer for the shell's binding energy, because we have no "unbound" state of the shell to compare with; we can define a notion of potential energy using the static region outside the shell, but how do we know it's the "right" one?
If, OTOH, we view the shell as having been brought inward from infinity, slowly lowered, then released from rest at t = 0 to collapse freely with zero pressure, then the shell is not self-contained; we have to include in our analysis whatever it is that does the slow lowering and extracts energy from the shell while doing it. Once we've accounted for that extra whatever it is, we could then split the total energy of the system into two parts, the shell and everything else, and focus on just the energy of the shell and how it changed from infinity to when it is released at t = 0. This gives an obvious comparison between the bound and "unbound" states of the shell, and that's why I recommended this method in an earlier post. This method, I believe, also answers the question I asked at the end of the previous paragraph, by showing that the answer given by this method is the same as the answer we get using the method in the previous paragraph and adopting the notion of potential energy defined by the static region outside the self-contained shell. But I haven't confirmed that with a full calculation.