Potential energy in Gauss' gun

Click For Summary

Homework Help Overview

The discussion revolves around the investigation of potential energy in a Gaussian gun, specifically focusing on the effects of varying distances and the number of stationary ball bearings. The original poster expresses difficulty in understanding the equations related to magnetic potential energy and questions the applicability of the formula U=-mB in this context.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the relationship between magnetic potential energy and the orientation of the ball bearing in a magnetic field. Questions arise regarding the definition of dipoles and the nature of induced dipoles in the context of the Gaussian gun. There is also a discussion about the use of bar magnets versus coils in the design of the gun.

Discussion Status

The discussion is ongoing, with participants providing insights and asking clarifying questions. Some guidance is offered regarding the mechanics of magnetic solenoid actuators and the importance of the magnetic field gradient, but no consensus has been reached on the specific equations or principles applicable to the original poster's investigation.

Contextual Notes

Participants note the original poster's limited background knowledge in the subject area, which may influence the depth of the discussion. There is also mention of the need for constraints to prevent rotation of the magnets within the gun's design.

daisy3110
Messages
6
Reaction score
0

Homework Statement


For my extended essay as part of the IB, I am investigating the effect of changing the distance and the number of stationary ball bearings in a Gaussian gun.

I was hoping to look at the energy transfer during each stage of magnets and therefore calculate the efficiency. However, I am struggling to understand the equations for determining the potential energy.

I understand that magnetic potential energy U can be found using U=-mB where m is the magnetic moment and B the magnetic field but I'm not sure if this would be correct for this application as it relates to the orientation of the diopole in relation to the field.

I can't see how the ball bearing would have more potential energy in one orientation than the other as it is a soft magnet and therefore surely the regions of polarity would change? Could anyone help me with this? Thanks!

Homework Equations


U=-mB

The Attempt at a Solution


(Sorry it's all kind of in one part)
 
Last edited by a moderator:
Physics news on Phys.org
daisy3110 said:

Homework Statement


For my extended essay as part of the IB, I am investigating the effect of changing the distance and the number of stationary ball bearings in a Gaussian gun.

I was hoping to look at the energy transfer during each stage of magnets and therefore calculate the efficiency. However, I am struggling to understand the equations for determining the potential energy.

I understand that magnetic potential energy U can be found using U=-mB where m is the magnetic moment and B the magnetic field but I'm not sure if this would be correct for this application as it relates to the orientation of the diopole in relation to the field.

I can't see how the ball bearing would have more potential energy in one orientation than the other as it is a soft magnet and therefore surely the regions of polarity would change? Could anyone help me with this? Thanks!

Homework Equations


U=-mB

The Attempt at a Solution


(Sorry it's all kind of in one part)
Could you post some links to the technical articles you have been reading about this? And by Gauss'/Gaussian Gun, you mean Coil Gun, right?

What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?
 
berkeman said:
Could you post some links to the technical articles you have been reading about this? And by Gauss'/Gaussian Gun, you mean Coil Gun, right?

What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?

There's not that much I can find about it online but https://www.wired.com/2011/12/does-a-magnet-gun-conserve-momentum is quite useful.
Yes, I do mean coil gun but using short bar magnets rather than coils.

I think what I meant by the orientation was that the definition of magnetic potential energy from the equation U=-mB relates to the alignment of a dipole in the presence of a magnetic field and the energy required to rotate it - https://en.wikipedia.org/wiki/Magnetic_energy http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magpot.html .
berkeman said:
What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?
- yes I think that is what I mean
I think what I want is an equation that would give the potential energy a ball bearing would have as a result of being in the magnetic field in the same was as E = -GmM/r does for gravity.

Hope this makes some sort of sense! I'm only in year 12 in the UK so my knowledge of this area is really quite limited.
 
daisy3110 said:
Yes, I do mean coil gun but using short bar magnets rather than coils.
I didn't know that bar magnets could be used with a coil gun. But I'm certainly no coil gun expert. You would need to constrain the path of the short bar magnet so that it can't rotate as it travels down the length of the coil gun, it would seem. Some sort of a plastic barrel maybe?
daisy3110 said:
I think what I want is an equation that would give the potential energy a ball bearing would have as a result of being in the magnetic field in the same was as E = -GmM/r does for gravity.
I believe you can look at how magnetic solenoid actuators work (where energizing the coil pulls the metal shaft into the body of the coil. It is the gradient of the magnetic field that generates the force (at least when the ball bearing is not magnetized), AFAIK.
 
berkeman said:
I didn't know that bar magnets could be used with a coil gun. But I'm certainly no coil gun expert. You would need to constrain the path of the short bar magnet so that it can't rotate as it travels down the length of the coil gun, it would seem. Some sort of a plastic barrel maybe?

I believe you can look at how magnetic solenoid actuators work (where energizing the coil pulls the metal shaft into the body of the coil. It is the gradient of the magnetic field that generates the force (at least when the ball bearing is not magnetized), AFAIK.

Thanks, I'll have a look at that. This is what I mean about how the gun works (sorry wasn't very clear)
 

Similar threads

Replies
15
Views
2K
Replies
9
Views
1K
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K