Potential energy in Gauss' gun

AI Thread Summary
The discussion focuses on investigating the potential energy in a Gaussian gun, specifically examining how the distance and number of stationary ball bearings affect energy transfer and efficiency. The participant expresses confusion regarding the application of the equation for magnetic potential energy, U=-mB, particularly in relation to the orientation of the ball bearings and their magnetic properties. Clarifications are sought on whether the concept of induced dipoles and magnetic field gradients apply to the setup. Suggestions include exploring how magnetic solenoid actuators operate and considering the constraints needed for the ball bearings in the gun. Overall, the conversation emphasizes the need for a better understanding of magnetic potential energy in this experimental context.
daisy3110
Messages
6
Reaction score
0

Homework Statement


For my extended essay as part of the IB, I am investigating the effect of changing the distance and the number of stationary ball bearings in a Gaussian gun.

I was hoping to look at the energy transfer during each stage of magnets and therefore calculate the efficiency. However, I am struggling to understand the equations for determining the potential energy.

I understand that magnetic potential energy U can be found using U=-mB where m is the magnetic moment and B the magnetic field but I'm not sure if this would be correct for this application as it relates to the orientation of the diopole in relation to the field.

I can't see how the ball bearing would have more potential energy in one orientation than the other as it is a soft magnet and therefore surely the regions of polarity would change? Could anyone help me with this? Thanks!

Homework Equations


U=-mB

The Attempt at a Solution


(Sorry it's all kind of in one part)
 
Last edited by a moderator:
Physics news on Phys.org
daisy3110 said:

Homework Statement


For my extended essay as part of the IB, I am investigating the effect of changing the distance and the number of stationary ball bearings in a Gaussian gun.

I was hoping to look at the energy transfer during each stage of magnets and therefore calculate the efficiency. However, I am struggling to understand the equations for determining the potential energy.

I understand that magnetic potential energy U can be found using U=-mB where m is the magnetic moment and B the magnetic field but I'm not sure if this would be correct for this application as it relates to the orientation of the diopole in relation to the field.

I can't see how the ball bearing would have more potential energy in one orientation than the other as it is a soft magnet and therefore surely the regions of polarity would change? Could anyone help me with this? Thanks!

Homework Equations


U=-mB

The Attempt at a Solution


(Sorry it's all kind of in one part)
Could you post some links to the technical articles you have been reading about this? And by Gauss'/Gaussian Gun, you mean Coil Gun, right?

What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?
 
berkeman said:
Could you post some links to the technical articles you have been reading about this? And by Gauss'/Gaussian Gun, you mean Coil Gun, right?

What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?

There's not that much I can find about it online but https://www.wired.com/2011/12/does-a-magnet-gun-conserve-momentum is quite useful.
Yes, I do mean coil gun but using short bar magnets rather than coils.

I think what I meant by the orientation was that the definition of magnetic potential energy from the equation U=-mB relates to the alignment of a dipole in the presence of a magnetic field and the energy required to rotate it - https://en.wikipedia.org/wiki/Magnetic_energy http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magpot.html .
berkeman said:
What do you mean about "orientation" of the steel ball bearing? And what do you mean about a dipole? Do you mean induced dipole from the gradient of the magnetic field leading into each coil stage?
- yes I think that is what I mean
I think what I want is an equation that would give the potential energy a ball bearing would have as a result of being in the magnetic field in the same was as E = -GmM/r does for gravity.

Hope this makes some sort of sense! I'm only in year 12 in the UK so my knowledge of this area is really quite limited.
 
daisy3110 said:
Yes, I do mean coil gun but using short bar magnets rather than coils.
I didn't know that bar magnets could be used with a coil gun. But I'm certainly no coil gun expert. You would need to constrain the path of the short bar magnet so that it can't rotate as it travels down the length of the coil gun, it would seem. Some sort of a plastic barrel maybe?
daisy3110 said:
I think what I want is an equation that would give the potential energy a ball bearing would have as a result of being in the magnetic field in the same was as E = -GmM/r does for gravity.
I believe you can look at how magnetic solenoid actuators work (where energizing the coil pulls the metal shaft into the body of the coil. It is the gradient of the magnetic field that generates the force (at least when the ball bearing is not magnetized), AFAIK.
 
berkeman said:
I didn't know that bar magnets could be used with a coil gun. But I'm certainly no coil gun expert. You would need to constrain the path of the short bar magnet so that it can't rotate as it travels down the length of the coil gun, it would seem. Some sort of a plastic barrel maybe?

I believe you can look at how magnetic solenoid actuators work (where energizing the coil pulls the metal shaft into the body of the coil. It is the gradient of the magnetic field that generates the force (at least when the ball bearing is not magnetized), AFAIK.

Thanks, I'll have a look at that. This is what I mean about how the gun works (sorry wasn't very clear)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top