Potential on the axis of a uniformly charged ring

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric potential on the axis of a uniformly charged ring. Participants are exploring the relationship between electric field and potential, particularly focusing on the integration methods required for such calculations.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the integration of electric field contributions from each element of the ring to determine the potential at a point on the axis. There are questions about the appropriateness of using certain paths for integration and the direction of the electric field.

Discussion Status

Some participants have provided guidance on the correct approach to calculating the potential, emphasizing the need to consider contributions from the entire ring rather than just points along the axis. There is acknowledgment of differing interpretations of the problem setup and the methods used.

Contextual Notes

There are indications of confusion regarding the integration paths and the assumptions made about the electric field's direction. The discussion reflects a mix of approaches and interpretations without a clear consensus on the best method to proceed.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
We have a uniformly charged ring of radius ##R## with a linear charge density ##\lambda##. Determine the potential at a point on its axis at a distance ##z## from the plane of the ring.

Answer: ##V=\dfrac{\lambda}{2\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}}##
Relevant Equations
##V_z=\int E\cdot dl##
We know that
$$V_Z=\int_{\textrm{ring}} E\cdot dl$$
We therefore consider ##E=\dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r##. Then,
$$V_Z=\int_{\textrm{ring}} \dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r\, dl = \dfrac{\lambda}{2\pi \varepsilon_0}\dfrac1r \int_{\textrm{ring}}dl=$$
$$=\dfrac{\lambda}{\cancel{2\pi} \varepsilon_0}\dfrac1r \cancel{2\pi} R=\dfrac{\lambda}{\varepsilon_0}\cdot \dfrac{R}{r}=\dfrac{\lambda}{\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}},$$
where ##r=\sqrt{z^2+R^2}##.
I have done this.
 
Physics news on Phys.org
It's just an accident that your answer is close to the right one. To calculate the circulation of the electric field around the ring you will need the field at points on the ring not somewhere on the axis. This field is not directed tangential to the path, And anyway, this integral around the ring (closed path) should be zero. so it will be useless.
You need to calculate the potential by integrating the contributions of each element of the ring to the potential to the given point on the axis. Similar to what you did for the electric field of the ring.
Or, you could use the definitionn of potential based on the integral of the electric field but then you need to integrate from the given pont to infinity and use the right path (and right formula for the field).
 
nasu said:
It's just an accident that your answer is close to the right one. To calculate the circulation of the electric field around the ring you will need the field at points on the ring not somewhere on the axis. This field is not directed tangential to the path, And anyway, this integral around the ring (closed path) should be zero. so it will be useless.
You need to calculate the potential by integrating the contributions of each element of the ring to the potential to the given point on the axis. Similar to what you did for the electric field of the ring.
Or, you could use the definitionn of potential based on the integral of the electric field but then you need to integrate from the given pont to infinity and use the right path (and right formula for the field).
Now I had done this and I would say it's fine. We have a charged ring:

$$V=\int_{\textrm{ring}} dV=\int_{\textrm{ring}} k\dfrac{dq}{r}=\int_{\textrm{ring}} k\dfrac{\lambda dl}{r}=k\dfrac{\lambda}{r}\int_{2\pi R}dl=$$
$$=k\dfrac{\lambda}{r}2\pi R=\dfrac{1}{4\pi \varepsilon_0}\dfrac{\lambda}{r}2\pi R=\dfrac{\lambda}{2\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}}$$
 
It looks like you got the right answer. Doesn't it?
 
  • Like
Likes   Reactions: Guillem_dlc

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K