Power series product convergence

  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    Power series
Click For Summary
The discussion focuses on the power series products P(z) and Q(z), with P(z) having a radius of convergence of 5 and Q(z) a radius of 1. The product P(z)Q(z) equals 1, which converges everywhere. Participants express agreement on the validity of this example, noting its simplicity and effectiveness in illustrating the concept. The consensus is that it serves as a strong example rather than a misleading one.
Hill
Messages
735
Reaction score
576
Homework Statement
Give an example of a pair of origin-centered power series, say P(z) and Q(z), such that the disc of convergence for the product P(z)Q(z) is larger than either of the two discs of convergence for P(z) and Q(z).
Relevant Equations
##\frac 1 {1-z} = 1+z+z^2+z^3+\cdots##
I take $$P(z)=\frac {1-z}{5-z} = \frac 1 5 -\frac 4 {25} z - \frac 4 {125} z^2 - \cdots$$ which has radius of convergence 5, and $$Q(z)=\frac {5-z} {1-z} = 5+4z+4z^2+\cdots$$ which has radius of convergence 1.
##P(z)Q(z)=1## converges everywhere.
Is this correct? If so, do you think it's a good example or rather a dirty trick, or both?
 
  • Like
Likes WWGD and FactChecker
Physics news on Phys.org
I think that is a good example.
 
  • Like
Likes FactChecker and Hill
I like it. It's much simpler and more convincing than any examples that I started to think of.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K