Power Series(Radius and interval of convergence)

  • Thread starter naspek
  • Start date
181
0
hey there.. i hope u guys can help me..
the question is...
Determine the interval and radius of convergence of the power series below..
[tex]\sum\limits_{k=0}^\infty[/tex]k!(x-3)^k

i've already find the radius, r = 0
then..
c - r < x < c + r
3 - 0 < x < 3 + 0
hence, x = 3

when x = 3..
[tex]\sum\limits_{k=0}^\infty[/tex]k!(3-3)^k = 0

so.. the interval of convergence is 0
am i do it right?
 

HallsofIvy

Science Advisor
41,618
821
hey there.. i hope u guys can help me..
the question is...
Determine the interval and radius of convergence of the power series below..
[tex]\sum\limits_{k=0}^\infty[/tex]k!(x-3)^k

i've already find the radius, r = 0
then..
c - r < x < c + r
3 - 0 < x < 3 + 0
hence, x = 3

when x = 3..
[tex]\sum\limits_{k=0}^\infty[/tex]k!(3-3)^k = 0

so.. the interval of convergence is 0
am i do it right?
No, the interval of convergence is an interval- a set of points, not a number. Since the radius of convergence is 0, the "interval" of convergence is the single point {3}
 
181
0
Got it!!! Thanks!! =)
 

Want to reply to this thread?

"Power Series(Radius and interval of convergence)" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Top Threads

Top