High School Predicting types of collisions

  • Thread starter Thread starter crudux_cruo
  • Start date Start date
  • Tags Tags
    Collisions
Click For Summary
Predicting the type of collision, specifically elastic versus inelastic, often requires understanding advanced concepts like the coefficient of restitution. Real-life collisions are typically inelastic, with energy loss being a common factor. The degree of inelasticity can be challenging to determine from first principles, as it often necessitates empirical measurement. The discussion highlights the importance of terminology in physics, which can aid in further research and understanding. Overall, grasping these concepts can enhance comprehension of collision dynamics.
crudux_cruo
Messages
23
Reaction score
11
I've been working through Chapter 9 of Fundamentals of Physics (Center of Mass and Linear Momentum) and while I think I generally understand the different types of collisions, I notice that all of the problems state (or heavily imply) the type of collision after it has happened.

Does predicting the type of collision generally require knowing more advanced topics like material science, or am I missing something fundamental from the textbook?
 
Physics news on Phys.org
Welcome to PF.

What do you mean by "type of collision"? Elastic vs inelastic, or something else?
 
  • Like
Likes crudux_cruo
Ibix said:
Welcome to PF.

What do you mean by "type of collision"? Elastic vs inelastic, or something else?

Thanks!

And yes, elastic vs inelastic. From what I understand all real life collisions are some degree of inelastic, with elastic collisions being useful mainly as an approximation.

Assuming I understand that correctly, I wanted to know what physically determined that 'degree of inelasticity'. I apologize if I am using improper or imprecise language here.
 
Yes, all realistic collisions involve some energy loss. I think you are correct that predicting the degree of energy loss from first principles is a hard problem. The number describing the degree of elasticity is the coefficient of restitution, which you can look up if you want. As far as I'm aware you usually just measure it for any given collision.
 
I appreciate the succinct response. I'm amazed I couldn't find it with a simple google search, but after doing some reading on COR the things are a fair bit more intuitive. I'm sure I'll confuse myself with it in a day or two though.
 
Glad to help - sometimes it's just knowing the term to look for.
 
  • Like
Likes crudux_cruo
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 7 ·
Replies
7
Views
25K
  • · Replies 4 ·
Replies
4
Views
5K