MHB Primary Ideals, prime ideals and maximal ideals.

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime
Click For Summary
The discussion centers on understanding Proposition 19 from Dummit and Foote regarding primary ideals, specifically part 4, which states that if the radical of an ideal Q is a maximal ideal, then Q is a primary ideal. The confusion arises from the proof's transition to the case where Q is reduced to (0) and how this relates to zero divisors in the quotient ring R/Q. It is clarified that in this scenario, the nilradical becomes the unique prime and maximal ideal of R/Q, leading to the conclusion that all zero divisors in R/Q must be nilpotent. This establishes the conditions necessary for Q to be classified as a primary ideal, resolving the initial queries about the proof's logic.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I have a problem in understanding the proof to Dummit and Foote Section 15.2, Proposition 19 regarding primary ideals. I hope someone can help.

My problem is with Proposition 19 part 4 - but note that part 4 relies on part 2 - see attachment.

The relevant sections of Proposition 19 read as follows: (see attachment)

-----------------------------------------------------------------------------------------------------------------

Proposition 19.

Let R be a commutative ring with 1

... ...

(2) The ideal Q is primary if and only if every zero divisor in R/Q is nilpotent.

... ...

(4) If Q is an ideal whose radical is a maximal ideal. then Q is a primary ideal

... ... etc

-----------------------------------------------------------------------------------------------------------------

The proof of (4) above proceeds as follows:

-----------------------------------------------------------------------------------------------------------------

Proof. (see attachment)

... ...

To prove (4) we pass to the quotient ring R/Q: by (2) it suffices to show that every zero divisor in this quotient ring is nilpotent.

We are reduced to the situation where Q = (0) and M = rad Q = rad (0), which is the nilradical, is a maximal ideal.

Since the nilradical is contained in every prime ideal (Proposition 12), it follows that M is the unique prime ideal, so also the unique maximal ideal.

... ... etc (see attachment)

--------------------------------------------------------------------------------------------------------------------

I have two problems with the proof above.

(1) I do not completely follow the statement:

"We are reduced to the situation where Q = (0) and M = rad Q = rad (0), which is the nilradical, is a maximal ideal."

I know this is something to do with zero divisors in R/Q, but why/how do we end up discussing Q = (0) exactly? Can someone please clarify? ( I suspect it is simple but I cannot see the connection :-( )(2) I am puzzled by the statement "it follows that M is the unique prime ideal, so also the unique maximal ideal"

This statement appears to indicate that in R we have that prime ideals are maximal ideals.

I thought that we could only assume that maximal ideals were prime ideals (D&F Corollary 14 page 256) but not the converse? Can someone please clarify.

Would appreciate some help.

Peter
[Note: D&F Corollary 14, page 256 reads as follows:

Corollary 14. Assume R is commutative. Every maximal ideal is a prime ideal.]
 
Physics news on Phys.org
I think there is some unfortunate symbol-overloading, here. Let's look at (4):

Suppose $Q$ is an ideal whose radical is maximal. Consider the quotient ring $R/Q$. In this new ring, $Q$ is the "zero", so the nilpotent elements of $R/Q$ are the elements of $\text{rad}(Q) = \text{rad}(0)$.

Since this ideal ($M$, the nilpotent elements of $R/Q$) is a nilradical, by an earlier result (Proposition 12) it is a maximal ideal.

Now since (also by Proposition 12) this ideal is contained in EVERY prime ideal, it must be the UNIQUE prime ideal of $R/Q$. To see this, suppose we had 2 prime ideals $I \neq J$ with:

$M \subseteq I, M \subseteq J$.

Since we have some $y \in J - I$ (or vice-versa, in which case switch the letters), it follows from the maximality of $M$ that $J = R/Q$, contradicting the fact that $J$ is a prime ideal (prime ideals cannot be the entire ring).

Since maximal ideals are necessarily prime, this means that $M$ is the unique prime ideal of $R/Q$, and thus the unique maximal ideal of $R/Q$ (make sure you follow this!).

Ok, now let $d$ be any zero-divisor in $R/Q$, and consider the principal ideal generated by $d$. Since zero-divisors ARE NOT UNITS, this must be a PROPER ideal of $R/Q$. As such, it is contained in some MAXIMAL ideal (which might be, perhaps, itself). But...we just have the ONE maximal ideal, $M$. This shows that any zero-divisor must lie within $M$, that is: is nilpotent in $R/Q$. Since we now have satisfied the conditions of part (2), we see that $Q$ is primary.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K