MHB Primitive Elements and Free Modules .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some help in order to fully understand the proof of Proposition 4.3.14 ... ...

Proposition 4.3.14 reads as follows:View attachment 8318
View attachment 8319
In the above proof by Bland we read the following:

" ... ... The induction hypothesis gives a basis $$\{ x, x'_2, \ ... \ ... \ x'_{n -1} \}$$ of $$M$$ and it follows that $$\{ x, x'_2, \ ... \ ... \ x'_{n - 1}, x'_n \}$$ is a basis of $$F$$ that contains $$x$$. ... ... "My question is as follows:

Why/how exactly does it follow that $$\{ x, x'_2, \ ... \ ... \ x'_{n - 1}, x'_n \}$$ is a basis of $$F$$ that contains $$x$$. ... ... Help will be appreciated ...

Peter==============================================================

It may help MHB members reading this post to have access to Bland's definition of 'primitive element of a module' ... especially as it seems to me that the definition is a bit unusual ... so I am providing the same as follows:


View attachment 8322

Hope that helps ...

Peter
 
Last edited:
Physics news on Phys.org
$F$ is a free module, $rank(F) = n$, $x$ is a primitive element of $F$, and suppose the induction hypothesis is true for free modules with $rank < n$

If $\{ x_1, x_2, \cdots, x_n \}$ is a basis for $F$ ($rank(F) = n$)

then $x = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ for some $a_i \in R$, $i=1, 2, \cdots, n$

Suppose $a_n = 0$

Then $x \in M = x_1R \oplus x_2R \oplus \cdots \oplus x_{n-1}R$ (definition)

Notice that $F = M \oplus x_nR$

$M$ is a free module and $rank(M) = n-1 < n$

By the induction hypothesis, $M$ has a basis $\{ x, x’_2, \cdots, x’_{n-1} \}$, containing $x$

Thus $M = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R$

and $F = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R \oplus x_nR$

Thus $\{ x, x’_2, \cdots, x’_{n-1}, x_n \}$ is a basis of $F$ that contains $x$
 
steenis said:
$F$ is a free module, $rank(F) = n$, $x$ is a primitive element of $F$, and suppose the induction hypothesis is true for free modules with $rank < n$

If $\{ x_1, x_2, \cdots, x_n \}$ is a basis for $F$ ($rank(F) = n$)

then $x = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ for some $a_i \in R$, $i=1, 2, \cdots, n$

Suppose $a_n = 0$

Then $x \in M = x_1R \oplus x_2R \oplus \cdots \oplus x_{n-1}R$ (definition)

Notice that $F = M \oplus x_nR$

$M$ is a free module and $rank(M) = n-1 < n$

By the induction hypothesis, $M$ has a basis $\{ x, x’_2, \cdots, x’_{n-1} \}$, containing $x$

Thus $M = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R$

and $F = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R \oplus x_nR$

Thus $\{ x, x’_2, \cdots, x’_{n-1}, x_n \}$ is a basis of $F$ that contains $x$

Thanks Steenis ...

Appreciate your help ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top