MHB Primitive Elements and Free Modules .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some help in order to fully understand the proof of Proposition 4.3.14 ... ...

Proposition 4.3.14 reads as follows:View attachment 8318
View attachment 8319
In the above proof by Bland we read the following:

" ... ... The induction hypothesis gives a basis $$\{ x, x'_2, \ ... \ ... \ x'_{n -1} \}$$ of $$M$$ and it follows that $$\{ x, x'_2, \ ... \ ... \ x'_{n - 1}, x'_n \}$$ is a basis of $$F$$ that contains $$x$$. ... ... "My question is as follows:

Why/how exactly does it follow that $$\{ x, x'_2, \ ... \ ... \ x'_{n - 1}, x'_n \}$$ is a basis of $$F$$ that contains $$x$$. ... ... Help will be appreciated ...

Peter==============================================================

It may help MHB members reading this post to have access to Bland's definition of 'primitive element of a module' ... especially as it seems to me that the definition is a bit unusual ... so I am providing the same as follows:


View attachment 8322

Hope that helps ...

Peter
 
Last edited:
Physics news on Phys.org
$F$ is a free module, $rank(F) = n$, $x$ is a primitive element of $F$, and suppose the induction hypothesis is true for free modules with $rank < n$

If $\{ x_1, x_2, \cdots, x_n \}$ is a basis for $F$ ($rank(F) = n$)

then $x = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ for some $a_i \in R$, $i=1, 2, \cdots, n$

Suppose $a_n = 0$

Then $x \in M = x_1R \oplus x_2R \oplus \cdots \oplus x_{n-1}R$ (definition)

Notice that $F = M \oplus x_nR$

$M$ is a free module and $rank(M) = n-1 < n$

By the induction hypothesis, $M$ has a basis $\{ x, x’_2, \cdots, x’_{n-1} \}$, containing $x$

Thus $M = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R$

and $F = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R \oplus x_nR$

Thus $\{ x, x’_2, \cdots, x’_{n-1}, x_n \}$ is a basis of $F$ that contains $x$
 
steenis said:
$F$ is a free module, $rank(F) = n$, $x$ is a primitive element of $F$, and suppose the induction hypothesis is true for free modules with $rank < n$

If $\{ x_1, x_2, \cdots, x_n \}$ is a basis for $F$ ($rank(F) = n$)

then $x = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ for some $a_i \in R$, $i=1, 2, \cdots, n$

Suppose $a_n = 0$

Then $x \in M = x_1R \oplus x_2R \oplus \cdots \oplus x_{n-1}R$ (definition)

Notice that $F = M \oplus x_nR$

$M$ is a free module and $rank(M) = n-1 < n$

By the induction hypothesis, $M$ has a basis $\{ x, x’_2, \cdots, x’_{n-1} \}$, containing $x$

Thus $M = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R$

and $F = xR \oplus x’_2R \oplus \cdots \oplus x’_{n-1}R \oplus x_nR$

Thus $\{ x, x’_2, \cdots, x’_{n-1}, x_n \}$ is a basis of $F$ that contains $x$

Thanks Steenis ...

Appreciate your help ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K