What are the primitive elements in GF(9)?

Click For Summary
The discussion focuses on demonstrating that α + 1 = [x] is a primitive element of GF(9) = ℤ₃[x]/<x² + x + 2>. The user confirms that the polynomial is irreducible and seeks assistance in identifying the multiplicative group elements. It is suggested to compute the powers of [x] from 0 to 7 to verify that they generate all elements of the group. The user learns that unique results from these computations indicate that [x] is indeed primitive. The conversation concludes with the user expressing gratitude for the clarification.
Dollydaggerxo
Messages
60
Reaction score
0

Homework Statement



Hi, I need to show that \alpha+1=[x] is a primitive element of GF(9)= \mathbb{Z}_3[x]/&lt;x^{2}+x+2&gt;
I have already worked out that the function in the < > is irreducible but I do not know where to go from this.

Homework Equations



there are 8 elements in the multiplicative group, what would they be?

The Attempt at a Solution


I guess it would be: 0, 2, x+2, what else? I am very unsure how to do this.

please help me would be appreciated thanks
 
Physics news on Phys.org
You'll need to show that [x] generates the elements of the multiplicative group. The way of doing this is just compute all the powers of [x] and see if they are indeed the elements that you want... So, you'll need to compute [x]0, [x]1, [x]2, [x]3, [x]4, [x]5, [x]6 and [x]7.
 
brilliant thank you.
how do i show that these elements that i have generated are the actual elements though? or is it enough just to say they are?

and the fact that I haven't got the same result twice from 0 to 7 means that it is primitive?
thanks so much
 
Dollydaggerxo said:
brilliant thank you.
how do i show that these elements that i have generated are the actual elements though? or is it enough just to say they are?

I don't know what you mean with this? The elements that you generated are the actual elements because [x]n is just n-times multiplication in the group GF(9). So the elements remain in GF(9) and are the actual elements.

I probably misunderstand something...

and the fact that I haven't got the same result twice from 0 to 7 means that it is primitive?

Exactly!
 
Haha ok just ignore me, i think i get it now anyway. many thanks for your help its much appreciated!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K