The former of these two laws [Law of Stationary Action] was discovered in the following manner. The elementary principle of straight rays shewed that light, under the most simple and usual circumstances, employs the direct, and, therefore, the shortest course to pass from one point to another. Again, it was a very early discovery, (attributed by Laplace to Ptolemy,) that in the case of a plane mirror, the bent line formed by the incident and reflected rays is shorter than any other bent line, having the same extremities, and having its point of bending on the mirror. These facts were thought by some to be instances and results of the simplicity and economy of nature; and Fermat, whose researches on maxima and minima are claimed by the continental mathematicians as the germ of the differential calculus, sought anxiously to trace some similar economy in the more complex case of refraction. He believed that by a metaphysical or cosmological necessity, arising from the simplicity of the universe, light always takes the course which it can traverse in the shortest time. To reconcile this metaphysical opinion with the law of refraction, discovered experimentally by Snellius, Fermat was led to suppose that the two lengths, or indices, which Snellius had measured on the incident ray prolonged and on the refracted ray, and had observed to have one common projection on a refracting plane, are inversely proportional to the two successive velocities of the light before and after refraction, and therefore that the velocity of light is diminished on entering those denser media in which it is observed to approach the perpendicular: for Fermat believed that the time of propagation of light along a line bent by refraction was represented by the sum of the two products, of the incident portion multiplied by the index of the first medium, and of the refracted portion multiplied by the index of the second medium; because he found, by his mathematical method, that this sum was less, in the case of a plane refractor, than if light went by any other than its actual path from one given point to another; and because he perceived that the supposition of a velocity inversely as the index, reconciled his mathematical discovery of the minimum of the foregoing sum with his cosmological principle of least time. Des Cartes attacked Fermat’s opinions respecting light, but Leibnitz zealously defended them; and Huygens was led, by reasonings of a very different kind, to adopt Fermat’s conclusions of a velocity inversely as the index, and of a minimum time of propagation of light, in passing from one given point to another through an ordinary refracting plane. Newton, however, by his theory of emission and attraction, was led to conclude that the velocity of light was directly, not inversely, as the index, and that it was increased instead of being diminished on entering a denser medium; a result incompatible with the theorem of shortest time in refraction. The theorem of shortest time was accordingly abandoned by many, and among the rest by Maupertuis, who, however, proposed in its stead, as a new cosmological principle, that celebrated law of least action which has since acquired so high a rank in mathematical physics, by the improvements of Euler and Lagrange. Maupertuis gave the name of action to the product of space and velocity, or rather to the sum of all such products for the various elements of any motion; conceiving that the more space has been traversed and the less time it has been traversed in, the more action may be considered to have been expended: and by combining this idea of action with Newton’s estimate of the velocity of light, as increased by a denser medium, and as proportional to the refracting index, and with Fermat’s mathematical theorem of the minimum sum of the products of paths and indices in ordinary refraction at a plane, he concluded that the course chosen by light corresponded always to the least possible action, though not always to the least possible time. He proposed this view as reconciling physical and metaphysical principles, which the results of Newton had seemed to put in opposition to each other; and he soon proceeded to extend his law of least action to the phenomena of the shock of bodies. Euler, attached to Maupertuis, and pleased with these novel results, employed his own great mathematical powers to prove that the law of least action extends to all the curves described by points under the influence of central forces; or, to speak more precisely, that if any such curve be compared with any other curve between the same extremities, which differs from it indefinitely little in shape and in position, and may be imagined to be described by a neighbouring point with the same law of velocity, and if we give the name of action to the integral of the product of the velocity and an element of a curve, the difference of the two neighbouring values of this action will be indefinitely less than the greatest linear distance (itself indefinitely small) between the two near curves; a theorem which I think may be advantageously expressed by saying that the action is stationary.
Lagrange extended this theorem of Euler to the motion of a system of points or bodies which act in any manner on each other; the action being in this case the sum of the masses by the foregoing integrals. Laplace has also extended the use of the principle in optics, by applying it to the refraction of crystals; and has pointed out an analogous principle in mechanics, for all imaginable connexions between force and velocity. But although the law of least action has thus attained a rank among the highest theorems of physics, yet its pretensions to a cosmological necessity, on the ground of economy in the universe, are now generally rejected. And the rejection appears just, for this, among other reasons, that the quantity pretended to be economised is in fact often lavishly expended. In optics, for example, though the sum of the incident and reflected portions of the path of light, in a single ordinary reflexion at a plane, is always the shortest of any, yet in reflexion at a curved mirror this economy is often violated. If an eye be placed in the interior but not at the centre of a reflecting hollow sphere, it may see itself reflected in two opposite points, of which one indeed is the nearest to it, but the other on the contrary is the furthest; so that of the two different paths of light, corresponding to these two opposite points, the one indeed is the shortest, but the other is the longest of any. In mathematical language, the integral called action, instead of being always a minimum, is often a maximum; and often it is neither the one nor the other: though it has always a certain stationary property, of a kind which has been already alluded to, and which will soon be more fully explained. We cannot, therefore, suppose the economy of this quantity to have been designed in the divine idea of the universe: though a simplicity of some high kind may be believed to be included in that idea. And though we may retain the name of action to denote the stationary integral to which it has become appropriated—which we may do without adopting either the metaphysical or (in optics) the physical opinions that first suggested the name—yet we ought not (I think) to retain the epithet least: but rather to adopt the alteration proposed above, and to speak, in mechanics and in optics, of the Law of Stationary Action.