Principle of Virtual Work to the FE method

AI Thread Summary
The discussion centers on the Principle of Virtual Work (PVW) and its relationship to the Finite Element (FE) method, emphasizing the significance of internal and external virtual work. It highlights that when internal virtual work equals external virtual work, it leads to equilibrium equations and boundary conditions, which are fundamental to the FE method. The conversation reflects confusion about the mathematical formulation and the apparent simplicity of the critical statement regarding equilibrium. Participants express a desire for clarity on how this relationship is articulated in literature, noting that it often feels inadequately addressed. Ultimately, the discussion concludes with a realization that the concepts may have been overcomplicated.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
PVW, FE, Equilibrium Equations
(I do understand there are many ways to formulate the FE method, but I wish to understand this one.)

  1. I understand that Hamilton's Principle is just that: a principle ( a law the recapitulates the equations of motion)
  2. I also understand that the Principle of Virtual Work (PVW) is a reformulation of Hamilton's Principle to account for non-conservative forces (in bodies that are rigid)

HOWEVER

If my focus was ONLY the PVW alone, I can understand this and where it came from: both are forces acting through virtual displacements)

1650519068300.png


But the development of the FE equations give (when we apply Gauss theorem, definition of strain, etc.)

1650519013406.png


Now, I can anticipate that this new term on the right is the INTERNAL virtual work: stress and variation of strain, internal

However, it seems so ad hoc, that books get away with this.

It seems to me that this statement below is CRITICAL:

When the Internal virtual work is equal to the External Virtual work, we recover the equilibrium equation and the boundary condition.

It seems to me that this BOLD statement above is the beating heart of the FE method (from the mechanical engineering perspective), but all books give it lip service and appear to simply "tweak" the PVW and "add this term."

I am sorry to say I am not entirely sure of where my confusion lies, but it seems to be that the BOLD BLUE statement above, must rise above the development and must become a restatement of the PVW.

I do not know what I am trying to ask, but could someone comment on this post?

Maybe I am beating this, senseless.
 

Attachments

  • 1650518977417.png
    1650518977417.png
    2.2 KB · Views: 146
Engineering news on Phys.org
I don't get the math, unfortunately, but your BOLD statement seems to be the equivalent of saying the obvious. If A is equal to B then we have equilibrium and the boundary is the equal sign between them. Of course I may be oversimplifying it. But you may also be overcomplicating it.
Just a thought.
 
GramInvents51 said:
I don't get the math, unfortunately, but your BOLD statement seems to be the equivalent of saying the obvious. If A is equal to B then we have equilibrium and the boundary is the equal sign between them. Of course I may be oversimplifying it. But you may also be overcomplicating it.
Just a thought.

I now think I was overcomplicating it.

Thank you!
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top