MHB Probabilities of certain events in a lucky wheel game

emmi2104
Messages
1
Reaction score
0
Given information:
A wheel of fortune with ten equal sectors is used for a candidate game. Five of these sectors are labelled only with the number 1, three only with the number 2 and two only with the number 3.

The game for a pair of candidates is as follows: The two candidates �K1 and K2, independently of each other, each spin the wheel of fortune once. The winner is the candidate who has "spun" the higher number. If the numbers are the same, the game ends in a draw.

  • f) The game described above is played with 𝑛 pairs of candidates. What is the minimum number of candidate pairs with which the game must be played so that with a probability of at least 0.95 at least one game ends in a draw?
and
  • h) With what probability 𝑝 do at most 143 of the 376 matches end in a draw?
 
Last edited:
Mathematics news on Phys.org
I see this is an old unanswered question. Perhaps it was a homework problem at one time. I would start by finding out the probability of (not a tie) in a single match.
 
That would be 1 - (0.5^2+0.3^2+0.2^2) = 0.62
Now what's the minimum value of n s.t. 0.62^n <= 0.05? Trial and error (or taking the log of .05 base 0.62 and rounding up) says 7

Does h require the binomial theorem?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top