MHB Probability Challenge: Find Interval of Integers Drawn from Urn

AI Thread Summary
The probability challenge involves determining the likelihood that the numbers drawn from an urn of n balls form a continuous interval of integers throughout the drawing process. An allowable process requires that each subsequent ball drawn must be adjacent to the current sequence of drawn integers, represented by a string of 'L' and 'U' letters. The number of allowable sequences starting with a ball numbered r is given by the binomial coefficient (n-1 choose r-1), leading to a total of 2^(n-1) allowable processes. Since the total number of ways to draw the balls is n!, the probability of an allowable process is calculated as 2^(n-1) / n!. This probability reflects the constraints on the drawing sequence necessary for maintaining an interval of integers.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
An urn contains $n$ balls numbered $1, 2, . . . , n$. They are drawn one at a time at random until the urn is empty.
Find the probability that throughout this process the numbers on the balls which have been drawn is an interval of integers.
(That is, for $1 \leq k \leq n$, after the $k$th draw the smallest number drawn equals the largest drawn minus $k − 1$.)
 
Mathematics news on Phys.org
lfdahl said:
An urn contains $n$ balls numbered $1, 2, . . . , n$. They are drawn one at a time at random until the urn is empty.
Find the probability that throughout this process the numbers on the balls which have been drawn is an interval of integers.
(That is, for $1 \leq k \leq n$, after the $k$th draw the smallest number drawn equals the largest drawn minus $k − 1$.)
[sp]Call the process "allowable" if it satisfies that condition.

Suppose that the first ball drawn is numbered $r$. If the process is to be allowable then the number on each subsequent ball drawn must be next to either the lower end ($L$) or the upper end ($U$) of the existing consecutive run of integers. There are $n-1$ more balls to be drawn, so the process is completely specified by a string of $n-1$ letters $L$ and $U$. Also, there are exactly $r-1$ numbers less than $r$, so the string must contain $r-1$ $L$s (and $n-r$ $U$s). The number of such strings is $$n-1\choose r-1$$. Therefore there are $$n-1\choose r-1$$ allowable processes starting with $r$. So the total number of allowable processes is $$\sum_{r=1}^n{n-1\choose r-1} = 2^{n-1}.$$ The number of all ways of drawing the balls from the urn is $n!$. Therefore the probability of a process being allowable is $\dfrac{2^{n-1}}{n!}.$

[/sp]
 
Opalg said:
[sp]Call the process "allowable" if it satisfies that condition.

Suppose that the first ball drawn is numbered $r$. If the process is to be allowable then the number on each subsequent ball drawn must be next to either the lower end ($L$) or the upper end ($U$) of the existing consecutive run of integers. There are $n-1$ more balls to be drawn, so the process is completely specified by a string of $n-1$ letters $L$ and $U$. Also, there are exactly $r-1$ numbers less than $r$, so the string must contain $r-1$ $L$s (and $n-r$ $U$s). The number of such strings is $$n-1\choose r-1$$. Therefore there are $$n-1\choose r-1$$ allowable processes starting with $r$. So the total number of allowable processes is $$\sum_{r=1}^n{n-1\choose r-1} = 2^{n-1}.$$ The number of all ways of drawing the balls from the urn is $n!$. Therefore the probability of a process being allowable is $\dfrac{2^{n-1}}{n!}.$

[/sp]

Awesome - thankyou for your participation, Opalg!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top