Probability Challenge: Find Interval of Integers Drawn from Urn

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Probability
Click For Summary
SUMMARY

The probability of drawing balls from an urn containing $n$ balls such that the drawn numbers form a consecutive interval is defined as "allowable." The process is specified by a sequence of $n-1$ letters, either $L$ (lower end) or $U$ (upper end), with the first ball drawn being numbered $r$. The total number of allowable processes is calculated as $$\sum_{r=1}^n{n-1\choose r-1} = 2^{n-1}$$, while the total number of possible drawing sequences is $n!$. Consequently, the probability of an allowable process is given by $$\dfrac{2^{n-1}}{n!}$$.

PREREQUISITES
  • Understanding of combinatorial mathematics
  • Familiarity with binomial coefficients, specifically ${n-1\choose r-1}$
  • Knowledge of probability theory and its applications
  • Basic grasp of sequences and intervals in number theory
NEXT STEPS
  • Study combinatorial proofs and applications of binomial coefficients
  • Explore advanced probability concepts, particularly in discrete mathematics
  • Learn about generating functions and their role in counting problems
  • Investigate the implications of allowable processes in other probabilistic models
USEFUL FOR

Mathematicians, statisticians, educators, and students interested in combinatorial probability and its applications in theoretical mathematics.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
An urn contains $n$ balls numbered $1, 2, . . . , n$. They are drawn one at a time at random until the urn is empty.
Find the probability that throughout this process the numbers on the balls which have been drawn is an interval of integers.
(That is, for $1 \leq k \leq n$, after the $k$th draw the smallest number drawn equals the largest drawn minus $k − 1$.)
 
Physics news on Phys.org
lfdahl said:
An urn contains $n$ balls numbered $1, 2, . . . , n$. They are drawn one at a time at random until the urn is empty.
Find the probability that throughout this process the numbers on the balls which have been drawn is an interval of integers.
(That is, for $1 \leq k \leq n$, after the $k$th draw the smallest number drawn equals the largest drawn minus $k − 1$.)
[sp]Call the process "allowable" if it satisfies that condition.

Suppose that the first ball drawn is numbered $r$. If the process is to be allowable then the number on each subsequent ball drawn must be next to either the lower end ($L$) or the upper end ($U$) of the existing consecutive run of integers. There are $n-1$ more balls to be drawn, so the process is completely specified by a string of $n-1$ letters $L$ and $U$. Also, there are exactly $r-1$ numbers less than $r$, so the string must contain $r-1$ $L$s (and $n-r$ $U$s). The number of such strings is $$n-1\choose r-1$$. Therefore there are $$n-1\choose r-1$$ allowable processes starting with $r$. So the total number of allowable processes is $$\sum_{r=1}^n{n-1\choose r-1} = 2^{n-1}.$$ The number of all ways of drawing the balls from the urn is $n!$. Therefore the probability of a process being allowable is $\dfrac{2^{n-1}}{n!}.$

[/sp]
 
Opalg said:
[sp]Call the process "allowable" if it satisfies that condition.

Suppose that the first ball drawn is numbered $r$. If the process is to be allowable then the number on each subsequent ball drawn must be next to either the lower end ($L$) or the upper end ($U$) of the existing consecutive run of integers. There are $n-1$ more balls to be drawn, so the process is completely specified by a string of $n-1$ letters $L$ and $U$. Also, there are exactly $r-1$ numbers less than $r$, so the string must contain $r-1$ $L$s (and $n-r$ $U$s). The number of such strings is $$n-1\choose r-1$$. Therefore there are $$n-1\choose r-1$$ allowable processes starting with $r$. So the total number of allowable processes is $$\sum_{r=1}^n{n-1\choose r-1} = 2^{n-1}.$$ The number of all ways of drawing the balls from the urn is $n!$. Therefore the probability of a process being allowable is $\dfrac{2^{n-1}}{n!}.$

[/sp]

Awesome - thankyou for your participation, Opalg!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K