Probability density of a 1-D Tonk Gas

AI Thread Summary
The discussion focuses on the probability density of gaps between particles in a 1D Tonk gas, characterized by N particles within a defined interval L. The free length, L_f, is calculated as L minus the total length occupied by the particles. A tip suggests determining the relative size of a slice through location space defined by a specific gap, y_1, particularly for the case of N=2. The user expresses confusion about how to interpret this tip and how to calculate the probability density function for the gap y_i. The conversation emphasizes the geometric representation of particle positions within an N-dimensional space and the need to analyze the relationship between particle separations.
GravityX
Messages
19
Reaction score
1
Homework Statement
Show that the probability density of an arbitrary ##y_i## is: ##p(y_i=y)=\frac{N(L_f-y)^{N-1}}{L_f^N}## for ##0\leq y \leq L_f##
Relevant Equations
none
It is a 1D Tonk gas consisting of ##N## particles lined up on the interval ##L##. The particles themselves have the length ##a##. Between two particles there is a gap of length ##y_i##. ##L_f## is the free length, i.e. ##L_f=L-Na##.

I have now received the following tip:

Determine the relative size of the slice through location space defined by a given ##y_1##. Visualize the case ##N=2##.

Is the following meant by relative size? ##\frac{y_1}{L}##

Unfortunately, I can't do anything with the tip because I don't know what exactly I have to do.
 
Physics news on Phys.org
GravityX said:
Homework Statement:: Show that the probability density of an arbitrary ##y_i## is: ##p(y_i=y)=\frac{N(L_f-y)^{N-1}}{L_f^N}## for ##0\leq y \leq L_f##
Relevant Equations:: none

It is a 1D Tonk gas consisting of ##N## particles lined up on the interval ##L##. The particles themselves have the length ##a##. Between two particles there is a gap of length ##y_i##. ##L_f## is the free length, i.e. ##L_f=L-Na##.

I have now received the following tip:

Determine the relative size of the slice through location space defined by a given ##y_1##. Visualize the case ##N=2##.

Is the following meant by relative size? ##\frac{y_1}{L}##

Unfortunately, I can't do anything with the tip because I don't know what exactly I have to do.
My guess is that location space means an N-dimensional cube of side Lf. The locations of the particles are then representable by a point in the cube.
For two particles, you have a square. The positions of the particles, measured from one end, are x, y. By choosing y>x, you have only a triangle to consider, and their separation is y-x. So in the triangle, fix the value of y-x and determine the line of points (x,y) which satisfy that. How long is the line, as a function of y-x?
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top