Probability distribution of outgoing energy of particle

Click For Summary
SUMMARY

The discussion focuses on the probability distribution of outgoing energy of a particle after scattering in the center of mass (CM) frame. The probability density function P(E') is derived as P(E') = (1 / 2π) * (dθ / dE'), where θ is the scattering angle. The relationship between energy in the CM frame and the lab frame is established using the Lorentz transformation, leading to the final expression for P(E') as P(E') = (1 / 2π) * (1 / (1 - (E' - γE'_{CM}) / (αE'_{CM}))²). Key variables include the Mandelstam variable s and natural units for simplification.

PREREQUISITES
  • Understanding of particle physics concepts, specifically scattering in the center of mass frame.
  • Familiarity with the Mandelstam variable and its application in high-energy physics.
  • Knowledge of Lorentz transformations and their role in relating different reference frames.
  • Proficiency in using natural units for simplifying equations in particle physics.
NEXT STEPS
  • Study the derivation of the Mandelstam variables in particle collisions.
  • Learn about Lorentz transformations and their applications in particle physics.
  • Explore the concept of probability distributions in quantum mechanics.
  • Investigate the implications of scattering angles on energy distributions in particle physics experiments.
USEFUL FOR

Particle physicists, researchers in high-energy physics, and students studying scattering processes and energy distributions in particle collisions will benefit from this discussion.

dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
Consider the scattering of particle 1 that is massless with particle 2 of mass m that is at rest in the lab frame. Let E and E' be the incoming and outgoing energy of particle 1 in the lab frame. Find the probability distribution of E' assuming that in the center of mass frame particle 1 is scatter in all directions with equal probability.
Relevant Equations
##p_{1} + p_{2} = p_{1}' + p_{2}'##
##v_{CM} = \frac{p_{total}}{E_{total}}##
So from particle 1 scattering in all directions with equal probability in the CM frame, I believe that that means probability of finding particle 1 in an angular range ##d\theta## is just ##\frac{d \theta}{2 \pi}##. Let P(E') be the probability density of E', so from the probability of finding the particle in a range ##d \theta##, ##P(E')dE' = \frac{d \theta}{2 \pi} ##, so ##P(E') = \frac{1}{2 \pi} \frac{d \theta}{dE'}##. Since this expression is in terms of the angle in the CM frame and not the lab frame, I need to solve for E' in terms of the angle in CM frame.

In the CM frame ##E'_{CM} = \frac{s - m^{2}}{2 \sqrt{s}}## where s is just the Mandelstam variable ##s = (p_{1} + p_{2})^{2}##. Since the square of a 4-vector is Lorentz invariant, ##(p_{1}+p_{2})^{2} = p_{1}^{2} + p_{2}^{2} + 2 p_{1} p_{2} = m^{2} + 2mE## (note I'm using natural units). So ##E'_{CM} = \frac{mE}{\sqrt{m^{2} + 2mE}}##. Now I need to relate this expression to E' in the lab frame, so I'll use a Lorentz transform for ##v_{CM} = \frac{p_{1}}{E + m} = \frac{E}{E+m}## and take the direction that particle 1 is initially moving in to be along the z axis for simplicity, so ##E' = \gamma E'_{CM} + \alpha E'_{CM}cos(\theta)## where ##\gamma = \frac{1}{\sqrt{1 - (v_{CM)^{2}}}## and ##\alpha = v_{CM} \gamma## when using natural units.
So rearranging this ## \theta = cos^{-1}(\frac{E' - \gamma E'_{CM}}{\alpha E'_{CM}})##, so plugging this back into my earlier expression for ##P(E')##,
I get ##P(E') = \frac{1}{2 \pi} \frac{1}{1 - (\frac{E' - \gamma E'_{CM}}{\alpha E'_{CM}})^{2} }##.

Is the right way to go about this problem or is something wrong with my thinking?
 
Physics news on Phys.org
So since it looks like I made a formatting error and for some reason I can't edit my post anymore, here is the section with messed up formatting fixed:
##\gamma = \frac{1}{\sqrt{1 - v_{CM}^{2}}}## and ##\alpha = v_{CM} \gamma## when using natural units. So So rearranging the expression for E' ##\theta = cos^{-1}(\frac{E' - \gamma E'_{CM}}{\alpha E'_{CM}})## So plugging this into my expression for P(E'), I get ##P(E') = \frac{1}{2 \pi} \frac{1}{1 - (\frac{E' - \gamma E'_{CM}}{\alpha E'_{CM}})^{2}}##
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
930