- #1

- 6

- 0

- TL;DR Summary
- Can you find the probability that a coin or die is loaded?

I was thinking that the probability of a set of events not happening is the same as the probability of that the die/coin is biased.

So, if I flip a coin 10 times and get heads every time, the probability the coin is biased is 1- (.5)^7.

Roll a die 5 times, get "4" all times, probability of bias = 1 - (1/6)^5

But that suggests the probability of bias after one coin toss is 50%, which can't be right. I'm also not sure how to calculate when the results are mixed, such as flipping a coin 10 times and getting heads 7 times.

Help!

So, if I flip a coin 10 times and get heads every time, the probability the coin is biased is 1- (.5)^7.

Roll a die 5 times, get "4" all times, probability of bias = 1 - (1/6)^5

But that suggests the probability of bias after one coin toss is 50%, which can't be right. I'm also not sure how to calculate when the results are mixed, such as flipping a coin 10 times and getting heads 7 times.

Help!