- #1

- 20

- 4

- TL;DR Summary
- I have been given a dataset of noise corrupted sample with noise having a gaussian PDF. How do I find the bias of the coin in the given problem statement ?

Suppose there are two persons A and B such that both have a personal communication system which can transmit and receive bits. B has a biased coin whose bias is not known. A asks B to toss the coin 2000 times, send a 0 when a tail comes up and a 1 when a head comes up. It is known that whatever A receives is corrupted by noise, which has a Gaussian PDF with mean μ and variance σ

From the 200 zeros that are sent first, we can determine the noise parameters like mean and variance because N + 0 = N , where N is the noise. But how do I find the bias of the coin from the remaining 2000 samples ?

Can anyone help me with the right approach to this problem ?

^{2}. A put’s an additional request to B and asks B to simply send 200 zeros before sending the coin toss results. Using these 2200 samples of data, find the mean, variance of noise and also the bias of the coin.**My attempt:**From the 200 zeros that are sent first, we can determine the noise parameters like mean and variance because N + 0 = N , where N is the noise. But how do I find the bias of the coin from the remaining 2000 samples ?

Can anyone help me with the right approach to this problem ?