MHB Probability that exactly one of three events will occur

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Events Probability
Click For Summary
The discussion focuses on deriving the probability that exactly one of three events, A1, A2, and A3, occurs. The formula presented is Pr(A1) + Pr(A2) + Pr(A3) - 2Pr(A1 ∩ A2) - 2Pr(A2 ∩ A3) - 2Pr(A1 ∩ A3) + 3Pr(A1 ∩ A2 ∩ A3). The user attempts to break down the calculation by expressing the required probability in terms of intersections and complements of the events. They suggest using the principle of inclusion-exclusion to simplify the notation and derive the probability step by step. The conversation emphasizes the mathematical approach to solving the problem systematically.
alexmahone
Messages
303
Reaction score
0
Let $A_1$, $A_2$, and $A_3$ be three arbitrary events. Show that the probability that exactly one of these three events will occur is

$\Pr(A_1)+\Pr(A_2)+\Pr(A_3)-2\Pr(A_1\cap A_2)-2\Pr(A_2\cap A_3)-2\Pr(A_1\cap A_3)+3\Pr(A_1\cap A_2\cap A_3)$

My attempt:

The required probability$=\Pr(A_1\cap A_2^c\cap A_3^c)+\Pr(A_1^c\cap A_2\cap A_3^c)+\Pr(A_1^c\cap A_2^c\cap A_3)$

$\Pr(A_1\cap A_2^c\cap A_3^c)=\Pr(A_1\cap(A_2\cup A_3)^c)$

$=\Pr(A_1)-\Pr(A_1\cap(A_2\cup A_3))$

How do I proceed?
 
Last edited:
Physics news on Phys.org
Alexmahone said:
Let $A_1$, $A_2$, and $A_3$ be three arbitrary events. Show that the probability that exactly one of these three events will occuris
$\Pr(A_1)+\Pr(A_2)+\Pr(A_3)-2\Pr(A_1\cap A_2)-2\Pr(A_2\cap A_3)-2\Pr(A_1\cap A_3)+3\Pr(A_1\cap A_2\cap A_3)$
To simplify notation.
$P(AB^cC^c)=P(AB^c)-P(AB^cC)$
$=P(A)-P(AB)-[P(AC)-P(ABC)]$
$=P(A)-P(AB)-P(AC)+P(ABC)$

Do that twice more for $P(A^cBC^c)~\&~P(A^cB^cC)$ and add.
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
21
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K