# Probability that more girls than boys go on the field trip

• jaus tail
In summary, the conversation discusses the correct way to calculate the probability of choosing a group of three children with a higher proportion of girls than boys. The textbook uses the concept of choosing with replacement, while the other person argues that this does not accurately model the situation. They suggest a different approach of continuously choosing until three distinct children are selected. The conversation ends with a question about the probabilities in this scenario.
jaus tail

## Homework Equations

First use equations to find out number of boys n number of girls.
Then use probability concepts.

## The Attempt at a Solution

Number of boys + number of girls = 12
Boys = Girls + 2

So we get Boys = 7, girls = 5.
Select more girls than boys in a group of 3 kids so we have:
GGG, BGG, GBG, GGB
So we have: 5/12 * 4/11 * 3/10 + 3 * [5/12 * 4/11 * 7/10]

But book has done this:

Shouldn't GGG be 5 * 4 * 3 / (12 * 11 * 10)?

#### Attachments

13.2 KB · Views: 901
8.6 KB · Views: 836
jaus tail said:

## Homework Statement

View attachment 222175

## Homework Equations

First use equations to find out number of boys n number of girls.
Then use probability concepts.

## The Attempt at a Solution

Number of boys + number of girls = 12
Boys = Girls + 2

So we get Boys = 7, girls = 5.
Select more girls than boys in a group of 3 kids so we have:
GGG, BGG, GBG, GGB
So we have: 5/12 * 4/11 * 3/10 + 3 * [5/12 * 4/11 * 7/10]

But book has done this:
View attachment 222176
Shouldn't GGG be 5 * 4 * 3 / (12 * 11 * 10)?
Your textbook is calculating the probabiity with replacement; i.e., with the events being independent. If you have a collection of 5 girls and 7 boys, the probability of choosing a girl is 5/12. If you make another selection at random, without removing the first girl, the probability of getting a girl again is still 5/12. Same for the third draw.

But isn't that wrong?

Merlin3189
jaus tail said:
But isn't that wrong?
I don't think it's wrong -- it's just a different way of doing the choosing.

jaus tail said:
But isn't that wrong?

Yes, it is wrong, if "choosing" means the usual way we employ the term! In that case all of the books possible answers are wrong, although one is numerically close.

Your solution is correct, but if I were marking it I would want to see a final answer of the form p/q and perhaps also a decimal approximation, and I would want to see a brief justification of the steps you took.
Just to be on the safe side I would want to see an explicit recognition that you are sampling without replacement, and maybe an explanation of why you are doing that.

jaus tail and Merlin3189
Doesn't the question specify choosing without replacement?
If a child is chosen to go on the trip, it can't be replaced and subsequently chosen again to go on the trip, else we may end up with less than 3 children.
If we persist in making more than 3 selections until we have 3 distinct children, then by ignoring the cases where a child is selected for a second (or more'th) time, we are saying that that child really wasn't replaced and available for selection.

jaus tail
Merlin3189 said:
Doesn't the question specify choosing without replacement?
If a child is chosen to go on the trip, it can't be replaced and subsequently chosen again to go on the trip, else we may end up with less than 3 children.
If we persist in making more than 3 selections until we have 3 distinct children, then by ignoring the cases where a child is selected for a second (or more'th) time, we are saying that that child really wasn't replaced and available for selection.

The question does not actually say explicitly that the choosing is done without replacement, but it does say "randomly picked", and any reasonable interpretation would be that it is done without replacement.

Anyway, you make a good point: if we can put back a previous choice (while recording that choice for future reference) we may choose the same student several times. We would need to keep picking until we got a new student not on the current list.

That brings up a nice little question: suppose we pick with replacement, but keep picking until we have three different students. What then are such probabilities as P(3 girls) or P(2 girls, 1 boy)? I am pretty sure I know the answer, and it is not too hard, but I will just leave it as an open question for now.

jaus tail
Ray Vickson said:
if we can put back a previous choice (while recording that choice for future reference) we may choose the same student several times. We would need to keep picking until we got a new student not on the current list.
My point was that, if you do this, then you are not actually replacing the child in the sense used by the replacement formula..

Just because you have a formula for choice with replacement and a formula for choice without replacement, doesn't mean that either of them can be used to model this situation. You have to decide how the situation can be modeled, then, if you are so inclined, choose a formula that applies to that model.
Your description of how you would select the three children, by keeping on picking until you have the three, is not a model to which the replacement formula applies - even though you use the word replacement in your description.

jaus tail
Merlin3189 said:
My point was that, if you do this, then you are not actually replacing the child in the sense used by the replacement formula..

Just because you have a formula for choice with replacement and a formula for choice without replacement, doesn't mean that either of them can be used to model this situation. You have to decide how the situation can be modeled, then, if you are so inclined, choose a formula that applies to that model.
Your description of how you would select the three children, by keeping on picking until you have the three, is not a model to which the replacement formula applies - even though you use the word replacement in your description.

No, of course you are right. I was just agreeing with you: the concept of choosing with replacement makes no real sense in this problem, and to make it fit you would need to go to some extraordinary and artificial lengths.

However, artificial or not, extraordinary or not, my little question still stands.

jaus tail
This is horrible. I had this question in exam and in the answer sheet they gave the above solution. I wasted ten minutes in the exam trying to solve this question and ended up losing precious time. Now I got 43 out of 100 and won't get admission. Will have to apply again and study again for next year entrance exam.

## What is the probability that more girls than boys go on the field trip?

The probability depends on the ratio of girls to boys in the group and cannot be determined without this information.

## What factors influence the probability of more girls than boys going on the field trip?

The probability can be affected by the total number of girls and boys in the group, any biases in the selection process, and random chance.

## Can the probability of more girls than boys going on the field trip be accurately predicted?

No, the probability can only be estimated based on the available information and is not guaranteed to be accurate.

## How can the probability of more girls than boys going on the field trip be calculated?

The probability can be calculated using mathematical formulas based on the number of girls and boys in the group and the total number of participants.

## Is the probability of more girls than boys going on the field trip affected by external factors?

The probability can be influenced by external factors such as cultural norms, societal expectations, and personal biases, but it ultimately depends on the group composition and selection process.

• Calculus and Beyond Homework Help
Replies
3
Views
899
• Calculus and Beyond Homework Help
Replies
3
Views
1K
• Calculus and Beyond Homework Help
Replies
16
Views
2K
• Calculus and Beyond Homework Help
Replies
1
Views
2K
• Calculus and Beyond Homework Help
Replies
2
Views
2K
• Calculus and Beyond Homework Help
Replies
3
Views
3K
• General Math
Replies
1
Views
1K
• Calculus and Beyond Homework Help
Replies
19
Views
1K
• Calculus and Beyond Homework Help
Replies
6
Views
935
• Calculus and Beyond Homework Help
Replies
7
Views
2K