MHB Problem evaluating the limit to find the radius of convergence

Click For Summary
The discussion focuses on evaluating the radius of convergence for the power series (k!(x-1)k)/((2k)(kk)). The user attempts to compute L = lim k→inf (an+1/an) to determine R = 1/L but encounters difficulties in evaluating the limit. It is emphasized that the ratio test must be applied to the absolute value series to ensure absolute convergence, as the ratio test is only valid for positive term series. The limit evaluation leads to the conclusion that the radius of convergence is 2e. The conversation concludes with appreciation for the clarification provided.
brunette15
Messages
58
Reaction score
0
Hi everyone,
I am trying to evaluate the radius of convergence for the following power series: (k!(x-1)k)/((2k)(kk))

I have begun by trying to compute L = lim k-->inf (an+1/an). To then be able to say R = 1/L.

So far i have L = lim k--> inf (kk(k+1)!)/(2(k+1)k+1k!)

From here i am having trouble evaluating the limit however :/
 
Physics news on Phys.org
brunette15 said:
Hi everyone,
I am trying to evaluate the radius of convergence for the following power series: (k!(x-1)k)/((2k)(kk))

I have begun by trying to compute L = lim k-->inf (an+1/an). To then be able to say R = 1/L.

So far i have L = lim k--> inf (kk(k+1)!)/(2(k+1)k+1k!)

From here i am having trouble evaluating the limit however :/

You actually have to use the ratio test on the ABSOLUTE VALUE series, to show where the series converges ABSOLUTELY, as you know nothing about what happens for particular x values, and the ratio test only works for positive term series.

Anyway, you need to evaluate the limit of the ratio of terms of the absolute value series, and then find which x values allow this limit to be less than 1. This will guarantee convergence. In other words, we have to solve this for x...

$\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{\frac{(k+1)!(x-1)^{k+1}}{2^{k+1}(k+1)^{k+1}}}{\frac{k!(x-1)^k}{2^kk^k}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1)! (x-1)^{k+1} 2^k k^k}{k!(x-1)^k 2^{k + 1}(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1) (x - 1) k^k}{2(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(x - 1) k^k}{2(k + 1)^k} \right| &< 1 \\ \frac{ \left| x - 1 \right| }{2} \lim_{k \to \infty} \left( \frac{k}{k + 1} \right) ^k &< 1 \\ \left| x - 1 \right| \lim_{ k \to \infty} \mathrm{e}^{\ln{ \left[ \left( \frac{k}{k+1} \right) ^k \right] }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} k \ln{ \left( \frac{k}{k + 1} \right) }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\ln{(k)} - \ln{(k + 1)}}{\frac{1}{k}} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\frac{1}{k} - \frac{1}{k + 1}}{-\frac{1}{k^2}} } &< 2 \textrm{ by L'Hospital's Rule} \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} -k^2 \left( \frac{k + 1 - k}{k(k + 1)} \right) } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} -\frac{k}{k + 1} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{1}{k} - 1 } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{-1} &< 2 \\ \left| x - 1 \right| &< 2\mathrm{e} \end{align*}$

So the radius of convergence is $\displaystyle \begin{align*} 2\mathrm{e} \end{align*}$.
 
Last edited:
Prove It said:
You actually have to use the ratio test on the ABSOLUTE VALUE series, to show where the series converges ABSOLUTELY, as you know nothing about what happens for particular x values, and the ratio test only works for positive term series.

Anyway, you need to evaluate the limit of the ratio of terms of the absolute value series, and then find which x values allow this limit to be less than 1. This will guarantee convergence. In other words, we have to solve this for x...

$\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{\frac{(k+1)!(x-1)^{k+1}}{2^{k+1}(k+1)^{k+1}}}{\frac{k!(x-1)^k}{2^kk^k}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1)! (x-1)^{k+1} 2^k k^k}{k!(x-1)^k 2^{k + 1}(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1) (x - 1) k^k}{2(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(x - 1) k^k}{2(k + 1)^k} \right| &< 1 \\ \frac{ \left| x - 1 \right| }{2} \lim_{k \to \infty} \left( \frac{k}{k + 1} \right) ^k &< 1 \\ \left| x - 1 \right| \lim_{ k \to \infty} \mathrm{e}^{\ln{ \left[ \left( \frac{k}{k+1} \right) ^k \right] }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} k \ln{ \left( \frac{k}{k + 1} \right) }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\ln{(k)} - \ln{(k + 1)}}{\frac{1}{k}} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\frac{1}{k} - \frac{1}{k + 1}}{-\frac{1}{k^2}} } &< 2 \textrm{ by L'Hospital's Rule} \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} -k^2 \left( \frac{k + 1 - k}{k(k + 1)} \right) } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} -\frac{k}{k + 1} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{1}{k} - 1 } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{-1} &< 2 \\ \left| x - 1 \right| &< 2\mathrm{e} \end{align*}$

So the radius of convergence is $\displaystyle \begin{align*} 2\mathrm{e} \end{align*}$.

I see! Thankyou!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K