Problem evaluating the limit to find the radius of convergence

Click For Summary
SUMMARY

The discussion focuses on evaluating the radius of convergence for the power series defined by the expression (k!(x-1)k)/((2k)(kk)). The user employs the ratio test, specifically analyzing the limit L = lim k→∞ (an+1/an) to determine R = 1/L. The final conclusion establishes that the radius of convergence is 2e, derived from evaluating the limit of the absolute value series and ensuring convergence conditions are met.

PREREQUISITES
  • Understanding of power series and their convergence
  • Familiarity with the ratio test in calculus
  • Knowledge of limits and L'Hospital's Rule
  • Basic algebraic manipulation of factorials and exponential functions
NEXT STEPS
  • Study the application of the ratio test in various series convergence scenarios
  • Explore advanced topics in series, such as uniform convergence and absolute convergence
  • Learn about other convergence tests, including the root test and comparison test
  • Investigate the implications of radius of convergence on function behavior within power series
USEFUL FOR

Mathematics students, educators, and professionals involved in calculus, particularly those focused on series analysis and convergence properties.

brunette15
Messages
58
Reaction score
0
Hi everyone,
I am trying to evaluate the radius of convergence for the following power series: (k!(x-1)k)/((2k)(kk))

I have begun by trying to compute L = lim k-->inf (an+1/an). To then be able to say R = 1/L.

So far i have L = lim k--> inf (kk(k+1)!)/(2(k+1)k+1k!)

From here i am having trouble evaluating the limit however :/
 
Physics news on Phys.org
brunette15 said:
Hi everyone,
I am trying to evaluate the radius of convergence for the following power series: (k!(x-1)k)/((2k)(kk))

I have begun by trying to compute L = lim k-->inf (an+1/an). To then be able to say R = 1/L.

So far i have L = lim k--> inf (kk(k+1)!)/(2(k+1)k+1k!)

From here i am having trouble evaluating the limit however :/

You actually have to use the ratio test on the ABSOLUTE VALUE series, to show where the series converges ABSOLUTELY, as you know nothing about what happens for particular x values, and the ratio test only works for positive term series.

Anyway, you need to evaluate the limit of the ratio of terms of the absolute value series, and then find which x values allow this limit to be less than 1. This will guarantee convergence. In other words, we have to solve this for x...

$\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{\frac{(k+1)!(x-1)^{k+1}}{2^{k+1}(k+1)^{k+1}}}{\frac{k!(x-1)^k}{2^kk^k}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1)! (x-1)^{k+1} 2^k k^k}{k!(x-1)^k 2^{k + 1}(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1) (x - 1) k^k}{2(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(x - 1) k^k}{2(k + 1)^k} \right| &< 1 \\ \frac{ \left| x - 1 \right| }{2} \lim_{k \to \infty} \left( \frac{k}{k + 1} \right) ^k &< 1 \\ \left| x - 1 \right| \lim_{ k \to \infty} \mathrm{e}^{\ln{ \left[ \left( \frac{k}{k+1} \right) ^k \right] }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} k \ln{ \left( \frac{k}{k + 1} \right) }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\ln{(k)} - \ln{(k + 1)}}{\frac{1}{k}} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\frac{1}{k} - \frac{1}{k + 1}}{-\frac{1}{k^2}} } &< 2 \textrm{ by L'Hospital's Rule} \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} -k^2 \left( \frac{k + 1 - k}{k(k + 1)} \right) } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} -\frac{k}{k + 1} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{1}{k} - 1 } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{-1} &< 2 \\ \left| x - 1 \right| &< 2\mathrm{e} \end{align*}$

So the radius of convergence is $\displaystyle \begin{align*} 2\mathrm{e} \end{align*}$.
 
Last edited:
Prove It said:
You actually have to use the ratio test on the ABSOLUTE VALUE series, to show where the series converges ABSOLUTELY, as you know nothing about what happens for particular x values, and the ratio test only works for positive term series.

Anyway, you need to evaluate the limit of the ratio of terms of the absolute value series, and then find which x values allow this limit to be less than 1. This will guarantee convergence. In other words, we have to solve this for x...

$\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{\frac{(k+1)!(x-1)^{k+1}}{2^{k+1}(k+1)^{k+1}}}{\frac{k!(x-1)^k}{2^kk^k}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1)! (x-1)^{k+1} 2^k k^k}{k!(x-1)^k 2^{k + 1}(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(k+1) (x - 1) k^k}{2(k + 1)^{k + 1}} \right| &< 1 \\ \lim_{k \to \infty} \left| \frac{(x - 1) k^k}{2(k + 1)^k} \right| &< 1 \\ \frac{ \left| x - 1 \right| }{2} \lim_{k \to \infty} \left( \frac{k}{k + 1} \right) ^k &< 1 \\ \left| x - 1 \right| \lim_{ k \to \infty} \mathrm{e}^{\ln{ \left[ \left( \frac{k}{k+1} \right) ^k \right] }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} k \ln{ \left( \frac{k}{k + 1} \right) }} &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\ln{(k)} - \ln{(k + 1)}}{\frac{1}{k}} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{\frac{1}{k} - \frac{1}{k + 1}}{-\frac{1}{k^2}} } &< 2 \textrm{ by L'Hospital's Rule} \\ \left| x - 1 \right| \mathrm{e}^{\lim_{k \to \infty} -k^2 \left( \frac{k + 1 - k}{k(k + 1)} \right) } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} -\frac{k}{k + 1} } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{ \lim_{k \to \infty} \frac{1}{k} - 1 } &< 2 \\ \left| x - 1 \right| \mathrm{e}^{-1} &< 2 \\ \left| x - 1 \right| &< 2\mathrm{e} \end{align*}$

So the radius of convergence is $\displaystyle \begin{align*} 2\mathrm{e} \end{align*}$.

I see! Thankyou!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K