OK. Since the problem is not an assignment, I think it's OK if I show how I thought about the problem. I think it is correct. But, I could be overlooking something. You can find detailed analyses of waveguides based on Maxwell's equations on the web. [For example, see videos 19, 20, and 21
here. Video 21 deals with the parallel plate guide.] But, I don't think we need all that.
Consider the diagram given in the problem statement:
View attachment 316610
The red line can be thought of as a ray that reflects back and forth between the conducting plates. We can add wavefronts as shown below:
View attachment 316611
We have “blue wavefronts” propagating to the right and upward and we have "green wavefronts" propagating to the right and downward. For TM waves the magnetic field is oscillating in and out of the page while the electric field oscillates as shown below:
View attachment 316612
This is a very schematic picture. The blue and green wavefronts actually overlap throughout the region between the plates. See figure 24-17 in
this Feynman lecture for example. So, at any point between the plates at some instant of time, the net electric field will be the superposition of a “blue electric field vector” and a “green electric field vector”. At the surface of either plate, the horizontal components of the blue and green vectors must cancel (boundary condition for E at the surface of a perfect conductor).
Consider the figure below:
View attachment 316613
Line AB represents the edge view of an imaginary plane that extends into and out of the page and it is oriented parallel to blue wavefronts. This plane is assumed to be fixed relative to the plates and does not move with the waves. Likewise, BC is the edge view of a fixed plane oriented parallel to green wavefronts. Suppose that at some instant of time, the blue electric field at B is as shown. Then the green E-field at point B must point along the dotted line BC such that its horizontal component cancels the horizontal component of the blue E-field at B. So, it must be that at this instant of time the E-fields at B look like
View attachment 316614
Since the dotted plane BC is parallel to the green wavefronts, the green electric field is the same at every point of plane BC. So, the green field at point C is the same as the green field at point B:
View attachment 316615
The net horizontal component of the E-field must vanish at point C. So, the blue field at C is as shown below:
View attachment 316616
Line CD represents the edge view of a fixed imaginary plane oriented parallel to the blue wavefronts. So, the blue electric field is the same at all points of this plane. Thus, we can see that the blue field on AB is the same as the blue field on CD. That is, the magnitude and phase of the blue field are the same on the planes AB and CD. Therefore,
the planes AB and CD must be separated by a perpendicular distance equal to an integer number, m, of wavelengths:
View attachment 316617
Let ##b## denote the distance between the plates and introduce the angle ##\phi## as shown:
View attachment 316618
I leave it to you to use geometry and trig to derive the important result $$m \lambda = 2b\sin \phi.$$ This is the key equation. It states that if the wavefronts are tilted from the vertical by a given angle ##\phi##, then only certain discrete wavelengths can propagate between the plates.
I also leave it to you to find how angle ##\phi## is related to the angle of incidence of the waves at the boundary between the two dielectrics. Since you have already found the angle of incidence, you can deduce the value of ##\phi##. Then you can find the allowed wavelengths for this ##\phi## from the equation above.
The problem states that you are dealing with a ##TM_1## mode. I believe the subscript 1 means you have the mode where the integer ##m## equals 1. So, ##\lambda## is determined for this problem. From this, you can easily find the frequency.