MHB Problem using this formula both ways

  • Thread starter Thread starter dsryan
  • Start date Start date
  • Tags Tags
    Formula
dsryan
Messages
6
Reaction score
0
Okay, so I've messed about with this for a while now and I've found that the following formula works on how to get the speed.

A car has covered 27 miles in 120 minutes. What is the speed it is traveling at?

I add three zeros to the 27, making it 27,000.

120/27000 = 225. I then put a decimal point at the start of the three digit number (if it were a 4 digit number, for example; 2225, I'd make it 2.225) but for this particular sum the number is 0.225.

0.225 x 60 = 13.500mph

I have found this method works, and its very easy!Now, I'm trying to use a similar method to use in order to obtain distances and speed.
For example, could someone answer the following setting it out the same way I did with the mph formula?

A car has been traveling 42 mph for 73 minutes, how far (in miles) has it travelled?

A car has traveled 52 miles in 39 minutes, what is the car's average speed?
 
Mathematics news on Phys.org
Personally, I find it much easier to write:

$$\overline{v}=\frac{d}{t}=\frac{27\text{ mi}}{120\text{ min}}\cdot\frac{60\text{ min}}{1\text{ hr}}=\frac{27}{2}\text{ mph}=13.5\text{ mph}$$

To me it is much more obvious what is going on. For example, suppose we wish to convert a speed given in mph to m/s. We could simply write:

$$v\text{ mph}=v\frac{\text{mi}}{\text{hr}}\cdot\frac{127\text{ cm}}{50\text{ in}}\cdot\frac{12\text{ in}}{1\text{ ft}}\cdot\frac{5280\text{ ft}}{1\text{ mi}}\cdot\frac{1\text{ m}}{100\text{ cm}}\cdot\frac{1\text{ hr}}{3600\text{ s}}=\frac{1397}{3125}v\frac{\text{m}}{\text{s}}$$

I think you will find this method will serve you better in all types of unit conversions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top