MHB Problems involving Trigonometric Identities

AI Thread Summary
The discussion focuses on solving trigonometric identity problems involving right triangles. For the first problem, the tangent identities are used to derive equations for two triangles, ultimately solving for x. The second problem involves determining the slope of a line and calculating angles using arctan and the properties of triangles. The calculations yield the slope of a red line as 5.34, with a specific point provided for the equation. The conversation emphasizes the importance of understanding trigonometric identities and their applications in geometry.
bearn
Messages
11
Reaction score
0
What are the step-by-step in solving these problems?
IMG_20220118_160045.png
 
Mathematics news on Phys.org
For (1) I assume the lower left angle is a right angle. Then we have two right triangles. For the smaller right triangle, $tan(\theta)= \frac{5}{x}$. For the larger, $tan(\theta+ \alpha)= tan(2\theta)= \frac{5+ 8}{x}= \frac{13}{x}$.

For $tan(2\theta)$ you can use the identity $tan(2\theta)= \frac{2 tan(\theta)}{1- tan^2(\theta)}$.

Since the first equation says that $tan(\theta)= \frac{5}{x}$, the second says $\frac{\frac{10}{x}}{1- \frac{25}{x^2}}= \frac{13}{x}$ that you can solve for x.
 
For (2) the blue line is given by 6x+ 7y= 60 or y= -(6/7)x+ 60/7. Its slope is -6/7 so the "exterior angle" of that triangle is arctan(-6/7)= 139.4 degrees. The interior angle is 180- 139.4= 40.6 degrees. Since $\theta= 60$ degrees the third angle, where the red line crosses the base is 180- 60- 40.6= 120- 40.6= 79.4 degrees. So the slope of the red line is tan(79.4)= 5.34.
y= 5.34(x- x_0)+ y_0 where (x_0, y_0) is any point on the line. We are told that (3, 6) is such a point.
 
Country Boy said:
For (1) I assume the lower left angle is a right angle.

If not, the problem becomes quite messy ... 3 unknown sides & one unknown angle. I was able to come up with four equations, but I'll be damned if I would make a "by hand" attempt at solving them for x, y, & z.
 
Country Boy said:
For (2) the blue line is given by 6x+ 7y= 60 or y= -(6/7)x+ 60/7. Its slope is -6/7 so the "exterior angle" of that triangle is arctan(-6/7)= 139.4 degrees. The interior angle is 180- 139.4= 40.6 degrees. Since $\theta= 60$ degrees the third angle, where the red line crosses the base is 180- 60- 40.6= 120- 40.6= 79.4 degrees. So the slope of the red line is tan(79.4)= 5.34.
y= 5.34(x- x_0)+ y_0 where (x_0, y_0) is any point on the line. We are told that (3, 6) is such a point.
Got it! Thank You so much!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
11
Views
2K
Replies
20
Views
2K
Replies
9
Views
2K
Replies
11
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Back
Top