1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Product of complex conjugate functions with infinite sums

  1. Feb 11, 2017 #1
    Hello there. I'm here to request help with mathematics in respect to a problem of quantum physics. Consider the following function $$ f(\theta) = \sum_{l=0}^{\infty}(2l+1)a_l P_l(cos\theta) , $$ where ##f(\theta)## is a complex function ##P_l(cos\theta)## is the l-th Legendre polynomial and ##a_l## is a the complex term (known as partial wave amplitude). Then, the author calculates the product of ##f(\theta)## with its complex conjugate, and shows the result: $$ f(\theta)f^{*}(\theta) = |f(\theta)|^2 = \sum_{l}\sum_{l'}(2l+1)(2l'+1)(a_l)^{*}(a_{l'})P_l(cos\theta)P_{l'}(cos\theta). $$ My problem here is to understand how he obtained the second equation. I'm not familiar with operations with sums and real analysis, and I'm stuck with it. Any help will be very appreciated.
     
  2. jcsd
  3. Feb 11, 2017 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Which part is unclear? The second equation directly follows from the first. The sums work like with real numbers. The complex conjugation is only relevant for the complex amplitude, where you also find it in the second equation.
     
  4. Feb 11, 2017 #3
    Good pointed; more precisely, I do not understand why he chooses a different index for each sum.
     
  5. Feb 11, 2017 #4

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Let's make an example, with a sum over just three terms: ##(x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3)##. This will lead to 9 terms: ##x_i y_j## for i=1,2,3, and j=1,2,3 separately. As formula, ##(\sum_{i=1}^{3}x_i) (\sum_{i=1}^{3} y_i) = (x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3) = (x_1 y_1 + x_1 y_2 + x_1 y_3 + x_2 y_1 + x_2 y_2 + x_2 y_3 + x_3 y_1 + x_3 y_2 + x_3 y_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} x_i y_j##. You need two different indices to have to cross-terms (like ##x_1 y_3##) included.
     
  6. Feb 12, 2017 #5
    Oh, it's very clear now! Thank you so much :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Product of complex conjugate functions with infinite sums
  1. Infinite Sums/Products (Replies: 1)

Loading...