Projectile Motion: Calculating Initial Speed for Arrow at 30° Angle

Click For Summary

Homework Help Overview

The discussion revolves around a projectile motion problem involving an arrow shot at a 30-degree angle to hit a target 100 meters away. Participants are exploring how to calculate the initial speed required for the arrow to reach the target.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss separating horizontal and vertical motion to analyze the problem. They mention known variables such as the angle, distance, and gravitational acceleration. Some participants attempt to derive time of flight and horizontal distance equations, while others express confusion about specific calculations and the use of trigonometric functions.

Discussion Status

The discussion is active, with participants providing different approaches to the problem. Some guidance has been offered regarding the use of kinematic equations, and there is acknowledgment of alternative methods, including a shortcut formula for range. However, there is no explicit consensus on the correct approach or solution yet.

Contextual Notes

Participants are working under the constraints of a homework assignment, which may limit the methods they can use. There are indications of misunderstanding in the application of trigonometric functions and time calculations, which are being questioned in the discussion.

sarabee
Messages
8
Reaction score
0
1. An arrow is shot upward at a 30 degree angle compared to horizontal in order to hit a target that is 100 meters away. What was the initials peed of the arrow if it hits the center of the target?2. This is the hardest question on my sheet, can someone please walk me through how to do it?3. This stumped me and I really have no idea how to start. Could someone please at least start me on this problem?
 
Physics news on Phys.org
The trick to solving these problems are detaching horizontal movement and vertical movement. What I mean by this is thinking about each dimension separately.

Okay, so we first list what we know.
θ = 30 degrees, d = 100 meters, g = -9.8 meters per second squared

We also need these kinematics equations:
d = vi * t + 1/2 * a * t^2
v = vi + a*t

We then think about the problem in the horizontal. There is no acceleration in the horizontal, so we use our first kinematics equation:
d = vh*t

We can rewrite vhorizontal as voriginal * cos(θ). Now, the equation for horizontal distance is:
d = vi * cos(θ) * t.

Now, we have to determine t.

We can't determine the t from the horizontal, so we switch over to thinking in the vertical.

We use the second kinematics equation, using gravity as our acceleration. At the peak of the arrow's path, vv = 0.

The equation is now:
vi * sin(θ) - 9.8 * ttop = 0

However, the fact remains that, at the moment, we are solving for the time it takes to reach the top of the arrow's path. We need the time it takes to hit the ground. We know that it takes the same amount of time to go up as the amount of time to go down.

So, the equation for t is:
t = ttop * 2

ttop = t/2

Now, we plug that into vi * sin(θ) - 9.8 * ttop = 0. Rewrite the equation to solve for t.

Plug the equation for t we just found into the equation for horizontal distance:
d = vi * cos(θ) * t

I trust you can take over from here.

Hope this helped!
 
Last edited:
Epic Mango said:
The trick to solving these problems are detaching horizontal movement and vertical movement. What I mean by this is thinking about each dimension separately.

Okay, so we first list what we know.
θ = 30 degrees, d = 100 meters, g = -9.8 meters per second squared

We also need these kinematics equations:
d = vi * t + 1/2 * a * t^2
v = vi + a*t

We then think about the problem in the horizontal. There is no acceleration in the horizontal, so we use our first kinematics equation:
d = vh*t

We can rewrite vhorizontal as voriginal * cos(θ). Now, the equation for horizontal distance is:
d = vi * cos(θ) * t.

Now, we have to determine t.

We can't determine the t from the horizontal, so we switch over to thinking in the vertical.

We use the second kinematics equation, using gravity as our acceleration. At the peak of the arrow's path, vv = 0.

The equation is now:
vi * sin(θ) - 9.8 * ttop = 0

However, the fact remains that, at the moment, we are solving for the time it takes to reach the top of the arrow's path. We need the time it takes to hit the ground. We know that it takes the same amount of time to go up as the amount of time to go down.

So, the equation for t is:
t = ttop * 2

ttop = t/2

Now, we plug that into vi * sin(θ) - 9.8 * ttop = 0. Rewrite the equation to solve for t.

Plug the equation for t we just found into the equation for horizontal distance:
d = vi * cos(θ) * t

I trust you can take over from here.

Hope this helped!

Hey, thanks! I tried to solve the problem, can you tell me if this is correct?
http://imgur.com/LzbTTlx
 
Sorry, but 20 is not the answer.

In fact, there is a much easier way to do this problem, using one formula.

The formula is:

R = vi2*sin(2θ)/g

R is the range, or your horizontal distance. If you check with this, it gives you the value of vi as ~33.6 m/s.

Generally, however, the "long" way of doing the problem is better. This is just a really quick shortcut, but you won't actually learn anything the short way. :D
 
sarabee said:
Hey, thanks! I tried to solve the problem, can you tell me if this is correct?
http://imgur.com/LzbTTlx
A few problems there.
You've used cos of the angle for both vertical and horizontal. That can't be right.
I don't understand how you get t = 0.177. The time taken will be some seconds.
Please don't post handwritten algebra as images. Make the effort to type it into the post. That bit of effort by the person posting saves effort for everyone reading.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 15 ·
Replies
15
Views
26K