I Proof about pre-images of functions

PhysicsRock
Messages
121
Reaction score
19
The problem reads: ##f:M \rightarrow N##, and ##L \subseteq M## and ##P \subseteq N##. Then prove that ##L \subseteq f^{-1}(f(L))## and ##f(f^{-1}(P)) \subseteq P##.
My co-students and I can't find a way to prove this. I hope, someone here will be able to help us out. It would be very appreciated.

Thank you in advance and have a great day everyone.
 
Mathematics news on Phys.org
If this is a textbook homework type of problem, then there is a section and a format for that and we are only allowed to give hints and guidance.
Hint: pick a point in the smaller subset side and track it through the operations.
 
FactChecker said:
If this is a textbook homework type of problem, then there is a section and a format for that and we are only allowed to give hints and guidance.
I guess I figured it out anyway, at least I tried. Thank you for the advice. I'll ask for a specific hint etc. next time.
 
PhysicsRock said:
The problem reads: ##f:M \rightarrow N##, and ##L \subseteq M## and ##P \subseteq N##. Then prove that ##L \subseteq f^{-1}(f(L))## and ##f(f^{-1}(P)) \subseteq P##.
My co-students and I can't find a way to prove this. I hope, someone here will be able to help us out. It would be very appreciated.

Thank you in advance and have a great day everyone.
Let ##x \in L##. Then ##y = f(x) \in f(L)##. Now, what is, by definition, ##f^{-1}(f(L))##? And why is ##x \in f^{-1}(f(L))##?

Hint: it might help conceptually (be less confusing) to let ##X = f(L)## so that ##y = f(x) \in X## and show that ##x \in f^{-1}(X)##.

PS the trick with these proofs is to get all the logical steps in the right order.
 
  • Like
Likes FactChecker and topsquark
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top