Proof involving convex function and concave function

Click For Summary
SUMMARY

The discussion centers on proving that the set {x ∈ X: f(x) ≤ g(x)} is convex, where f: X → ℝ is a convex function and g: X → ℝ is a concave function. Key inequalities are established using the definitions of convex and concave functions, specifically f(αx + (1-α)y) ≤ αf(x) + (1-α)f(y) and g(αx + (1-α)y) ≥ αg(x) + (1-α)g(y). The conclusion is that if f(x) ≤ g(x) holds for all x in the set, then the set itself is convex, as it satisfies the definition of a convex set.

PREREQUISITES
  • Understanding of convex functions and their properties
  • Understanding of concave functions and their properties
  • Familiarity with vector spaces over ℝ
  • Knowledge of inequalities and their applications in proofs
NEXT STEPS
  • Study the definition and properties of convex sets in detail
  • Explore examples of convex and concave functions in mathematical analysis
  • Learn about the implications of Jensen's inequality in convex analysis
  • Investigate the relationship between convexity and optimization problems
USEFUL FOR

Mathematics students, particularly those studying real analysis, optimization, or functional analysis, will benefit from this discussion. It is also valuable for anyone interested in the theoretical foundations of convexity in mathematical contexts.

TyroneTheDino
Messages
46
Reaction score
1

Homework Statement


[/B]
Let X be a vector space over ##\mathbb{R}## and ## f: X \rightarrow \mathbb{R} ## be a convex function and ##g: X \rightarrow \mathbb{R}## be a concave function. Show: The set {##x \in X: f(x) \leq g(x)##} is convex.

Homework Equations


[/B]
If f is convex ##\rightarrow## ##f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)##
If g is concave ##\rightarrow## ##g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y)##
##\forall x,y \in X ## and ## \alpha \in \mathbb{R}## where ## 0 < \alpha < 1##

The Attempt at a Solution



I just assumed that because
##f(x) \leq g(x)## ##\rightarrow## ##f(\alpha x + (1-\alpha)y) \leq g(\alpha x + (1-\alpha)y)##.
And also
##\alpha f(x) + (1-\alpha)f(y) \leq \alpha g(x) + (1-\alpha)g(y)##.

Then because we have that g is convex and f is concave from the relevant equations we have:
## f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) \leq \alpha g(x) + (1-\alpha)g(y) \leq g(\alpha x + (1-\alpha)y)##

I know this isn't enough to show that the set is convex, but I am wondering I am on the right track of thinking and what possible next steps should be.
 
Physics news on Phys.org
TyroneTheDino said:

Homework Statement


[/B]
Let X be a vector space over ##\mathbb{R}## and ## f: X \rightarrow \mathbb{R} ## be a convex function and ##g: X \rightarrow \mathbb{R}## be a concave function. Show: The set {##x \in X: f(x) \leq g(x)##} is convex.

Homework Equations


[/B]
If f is convex ##\rightarrow## ##f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)##
If g is concave ##\rightarrow## ##g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y)##
##\forall x,y \in X ## and ## \alpha \in \mathbb{R}## where ## 0 < \alpha < 1##

The Attempt at a Solution



I just assumed that because
##f(x) \leq g(x)## ##\rightarrow## ##f(\alpha x + (1-\alpha)y) \leq g(\alpha x + (1-\alpha)y)##.
And also
##\alpha f(x) + (1-\alpha)f(y) \leq \alpha g(x) + (1-\alpha)g(y)##.

Then because we have that g is convex and f is concave from the relevant equations we have:
## f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) \leq \alpha g(x) + (1-\alpha)g(y) \leq g(\alpha x + (1-\alpha)y)##

I know this isn't enough to show that the set is convex, but I am wondering I am on the right track of thinking and what possible next steps should be.
The next step would be to write the definition of a convex set (as opposed to a convex function). Then see what you can do with your inequalities.
 
tnich said:
The next step would be to write the definition of a convex set (as opposed to a convex function). Then see what you can do with your inequalities.

A subset E of X is called convex if, for any ##x,y \in E## and ##t \in (0,1)## then ##(1-t)x + ty \in E##.

So by the inequality I wrote since ##\alpha f(x) + (1-\alpha)f(y)## is contained in the set it is convex?
 
TyroneTheDino said:
A subset E of X is called convex if, for any ##x,y \in E## and ##t \in (0,1)## then ##(1-t)x + ty \in E##.

So by the inequality I wrote since ##\alpha f(x) + (1-\alpha)f(y)## is contained in the set it is convex?
That is kind of the idea, but the set is two-dimensional. You just need to put together the chain of inequalities that shows that for two ordered pairs ##(x_1,y_1), (x_2,y_2)## such that ##x_1,x_2 \in X, f(x_1) \le y_1 \le g(x_1)## and ##f(x_2) \le y_2 \le g(x_2)## if follows that ##(1-t)(x_1,y_1) +t(x_2,y_2)## satisfies the same conditions for ##0\le t\le 1##.
 
tnich said:
That is kind of the idea, but the set is two-dimensional. You just need to put together the chain of inequalities that shows that for two ordered pairs ##(x_1,y_1), (x_2,y_2)## such that ##x_1,x_2 \in X, f(x_1) \le y_1 \le g(x_1)## and ##f(x_2) \le y_2 \le g(x_2)## if follows that ##(1-t)(x_1,y_1) +t(x_2,y_2)## satisfies the same conditions for ##0\le t\le 1##.
Oops. Misread the problem. I'm wrong about the two dimensions. It does say to show that the set X is convex.
 
tnich said:
Oops. Misread the problem. I'm wrong about the two dimensions. It does say to show that the set X is convex.
So what you need to show is that for all ##x, y \in X## and ## t \in (0,1), f((1-t)x + ty) \le g((1-t)x + ty)##.
 
TyroneTheDino said:
If g is concave ##\rightarrow## ##g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y)##
##\forall x,y \in X ## and ## \alpha \in \mathbb{R}## where ## 0 < \alpha < 1##
You have just repeated the definition for a convex function, not a concave function. The ##\le## in the definition above should be ##\ge##.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K
Replies
20
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K