Proof of a corollary of fundamental theorem of algebra

Click For Summary
SUMMARY

The discussion centers on proving the corollary of the Fundamental Theorem of Algebra, which states that every polynomial of positive degree n can be factored as P(x) = a_n(x - r_1)(x - r_2)...(x - r_n), where r_i are the roots. Participants emphasize the necessity of proof, suggesting a proof by induction approach. They clarify that if P(x) has a root r_1, then P(x) can be expressed as (x - r_1)P_1(x), where P_1(x) is a polynomial of degree n-1. The discussion concludes with a consensus on the validity of the inductive proof method for establishing the corollary.

PREREQUISITES
  • Understanding of the Fundamental Theorem of Algebra
  • Knowledge of polynomial factorization
  • Familiarity with the Remainder Theorem
  • Basic principles of mathematical induction
NEXT STEPS
  • Study the proof of the Fundamental Theorem of Algebra
  • Learn about polynomial long division and its applications
  • Explore the Remainder Theorem in depth
  • Investigate mathematical induction techniques and examples
USEFUL FOR

Mathematics students, educators, and anyone interested in algebraic proofs and polynomial theory will benefit from this discussion.

mindauggas
Messages
127
Reaction score
0

Homework Statement



Assuming the validity of the fundamental theorem of algebra, prove the corollary that:

Every polynomial of positive degree n has a factorization of the form:

P(x)=a_{n}(x-r_{1})...(x-r_{n}) where r_{i} aren't necessarily distinct.

Homework Equations



Fundamental Theorem of Algebra: Every polynomial of positive degree with complex coefficients has at least one complex zero.

The Attempt at a Solution



Does this even require proof? Don't know where to begin...
 
Physics news on Phys.org
mindauggas said:

Homework Statement



Assuming the validity of the fundamental theorem of algebra, prove the corollary that:

Every polynomial of positive degree n has a factorization of the form:

P(x)=a_{n}(x-r_{1})...(x-r_{n}) where r_{i} aren't necessarily distinct.

Homework Equations



Fundamental Theorem of Algebra: Every polynomial of positive degree with complex coefficients has at least one complex zero.

The Attempt at a Solution



Does this even require proof? Don't know where to begin...

Sure it requires proof. Start by saying P(x) is has a root r1. Show (x-r1) divides P(x), so you can write P(x)=(x-r1)P1(x) where P1(x) has degree n-1. Now apply the same thing to P1(x). Etc. If you want to be more formal you prove it by induction.
 
Attempt:

(1) We have a polynomial P(x)=a(x-r_{1})

(2) x-r_{1} is a factor if and only if r_{1} is a zero (Remainder theorem)

(3) P(r_{1})=a(r_{1}-r_{1}) which is zero, therefore r_{1} is a zero and x-r_{1} is a factor.

At this point I have a question: by what theorem can now take the step: (4) P(x)=a(x-r_{1})(x-r_{n-1}) or should this be obvious? Because I don't understand why is this the case.
 
P(x) is a polynomial of degree n. You've only got a polynomial of degree 1. Reread my last post.
 
Dick said:
P(x) is a polynomial of degree n. You've only got a polynomial of degree 1. Reread my last post.

Dick said:
Start by saying P(x) is has a root r1

But I can't assume that P(x) is a polynomial o degree n and than just write: P(x)=a(x-r_{1}) where do I indicate the degree? Should I write: P(x)=a(x-r_{1})^{n} ? Or something?
 
Last edited:
mindauggas said:
But I can't assume that P(x) is a polynomial o degree n and than just write: P(x)=a(x-r_{1}) where do I indicate the degree? Should I write: P(x)=a(x-r_{1})^{n} ? Or something?

I would write it as P(x)=(x-r_{1})P_1(x). When you divide x-r_1 into P(x) you are going to get another polynomial, not just a constant.
 
Attempt #2:

(1) We denote a polynomial of degree n as P(x)=a(x-r_{1})P_{1}(x)

(2) x-r_{1} is a factor if and only if r_{1} is a zero (Remainder theorem)

(3) P(r_{1})=a(r_{1}-r_{1})P_{1}(r_{1}) which is (NOT?)zero, therefore r_{1} is (NOT?)a zero and x-r_{1} is (NOT?) a factor.

It doesn't divide then? Or have I misunderstood smth?
 
I would be inclined to do this as a "proof by induction" on n, the degree of the polynomial. You have done the "n= 1" case. Now show that "if a polynomial of degree k can be factored as linear factors, so can a polynomial of degree k+1".
 
(1) We have a statement P_{1} "a polynomial a(x-r_{1}) has expresion x-r_{1} as a factor", which is equivalent to saying that it can be factored as a(x-r_{1})?. Let's call the first polynomial P_{1}(x) in accordance to first statement and denote P_{n}(x) a polynomial corresponding to the statement P_{n} for the polynomial a(x-r_{1})(x-r_{2})...(x-r_{n})

(2) Now, x-r_{1} is a factor if and only if r_{1} is a zero (Remainder theorem)

(3) Since P_{1}(r_{1})=a(r_{1}-r_{1}) is equal to zero, therefore r_{1} is a zero and x-r_{1} is a factor of the polynomial.

(4) Assume that statement P_{k} is true.

(5) P_{k+1} is the statement: a polynomial a(x-r_{1})(x-r_{2})...(x-r_{k})(x-r_{k+1}) has expresion x-r_{k+1} as a factor. Repeating (2) and (3) with r_{k+1} we get P_{k+1}(k+1)=0

(6)Therefore every polynomial of positive degree n has a factorization of the form:

P(x)=a_{n}(x-r_{1})...(x-r_{n}) where r_{i} aren't necessarily distinct.

Q.E.D. ? I don't think so.

Shouldn't I start with general rule for a polynomial: f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0} ?
 
Last edited:
  • #10
Can someone approve that this constitutes a proof of what I intended to prove? Maybe additional qualifications are needed - some steps are missing?
 
  • #11
If you are doing induction P_k should be the statement "any polynomial of degree k can be expressed in the form a (x-r_1) (x-r_2) ... (x-r_k)".

You can do the k=1 case without using your theorem at all. f(x)=a_1 x + a_0 is a polynomial of degree 1. You can write that as f(x)=a_1 (x + \frac{a_0}{a_1}) Since your root is r_1=(-a_0/a_1) that expresses f(x) in the form a(x-r). To prove P_k implies P_{k+1}, pick a polynomial p(x) of degree k+1. The fundamental theorem of algebra says p(x) has a root, call it r_{k+1}. So p(x)=(x-r_{k+1})*q(x) where q(x) has degree k. Now use your induction hypothesis on q(x).
 
  • #12
(1) Assume the statement P_{k}: "the polynomial q(x) od degree k can be written as q(x)=a_{k}(x-r_{1})...(x-r_{k})" is true.

(2) Now the statement P_{k+1} is about the polynomial p(x)=(x-r_{k+1})q(x) which can be rewritten as: p(x)=(x-r_{k+1})a_{k}(x-r_{1})...(x-r_{k}).

(3) Since we've assumed P_{k} is true, and P_{k+1} was shown to be true previously (I didn't write the statement, but its trivial) - QED (?)

Can anyone give feedback, especially for the step (2).
 
Last edited:
  • #13
You need to state explicitely, and support,
"If Pk+1 is a polynomial of degree k+1 and Pk+1(x)= (x- r)Q(x), then Q(x) is a polynomial of degree k".
 
Last edited by a moderator:
  • #14
Thanks
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K