Undergrad Proof of addition of limits when the output value is infinite

Click For Summary
The discussion centers on the proof of the addition of limits when the output value approaches infinity, highlighting the need for a different condition compared to finite limits. Participants clarify that the proof involves showing that for any large positive M, a corresponding δ can be found such that the function exceeds M. The focus is on the case where both functions involved approach infinity, leading to the conclusion that their sum also approaches infinity. There is a mention of using specific functions, like f(x) = 1/x, to illustrate the concept. Overall, the proof for infinite limits is deemed straightforward once the correct conditions are understood.
swampwiz
Messages
567
Reaction score
83
I was looking at some websites that show the proof of addition of limits for a finite output value, but I don't see one for the case of infinite output value, which has a different condition that needs to be met - i.e., | f( x ) | > M instead of | f( x ) - L | < ε.

http://tutorial.math.lamar.edu/Classes/CalcI/LimitProofs.aspx

http://www.milefoot.com/math/calculus/limits/GenericLimitLawProofs04.htm

And I can't use the trick of letting M be ½ since the triangle inequality doesn't work in the proper direction.

Any idea on how this proof is done for an infinite value?
 
Physics news on Phys.org
swampwiz said:
I was looking at some websites that show the proof of addition of limits for a finite output value, but I don't see one for the case of infinite output value, which has a different condition that needs to be met - i.e., | f( x ) | > M instead of | f( x ) - L | < ε.

http://tutorial.math.lamar.edu/Classes/CalcI/LimitProofs.aspx

http://www.milefoot.com/math/calculus/limits/GenericLimitLawProofs04.htm

And I can't use the trick of letting M be ½ since the triangle inequality doesn't work in the proper direction.

Any idea on how this proof is done for an infinite value?
What exactly are you trying to prove?
 
  • Like
Likes HallsofIvy and member 587159
PeroK said:
What exactly are you trying to prove?

AIUI, the ε-δ comparison is not { | f( x ) - L | < ε }, but rather { | f( x ) | > M }, so the trick of making each term be { f( x ) > ½ M } doesn't work.
 
swampwiz said:
AIUI, the ε-δ comparison is not { | f( x ) - L | < ε }, but rather { | f( x ) | > M }, so the trick of making each term be { f( x ) > ½ M } doesn't work.
What is AIUI? If it's an acronym, it's not one I've seen before.

All you need to do is to show that, given any (large and positive) M, then you can find a ##\delta > 0## such that f(x) > M.

Try it with f(x) = 1/x, and ##\lim_{x \to 0^+} f(x)##. If it's not obvious, can you find a number ##\delta## so that f(x) > 1000? 10,000? 100,000? You'll need to find a different ##\delta## for each.
 
Mark44 said:
What is AIUI? If it's an acronym, it's not one I've seen before.

All you need to do is to show that, given any (large and positive) M, then you can find a ##\delta > 0## such that f(x) > M.

Try it with f(x) = 1/x, and ##\lim_{x \to 0^+} f(x)##. If it's not obvious, can you find a number ##\delta## so that f(x) > 1000? 10,000? 100,000? You'll need to find a different ##\delta## for each.

I understand when it's a single function, but the case I was referring to was when it's the sum of a pair of functions.

AIUI = As I Understand It
 
swampwiz said:
I understand when it's a single function, but the case I was referring to was when it's the sum of a pair of functions.

AIUI = As I Understand It

AIUI you want to prove:
$$\text {If} \ \lim_{x \rightarrow a} f(x) = +\infty \ \text{and} \ \lim_{x \rightarrow a} g(x) = +\infty, $$
$$\ \text{then} \ \lim_{x \rightarrow a} (f(x)+g(x)) = +\infty$$
 
swampwiz said:
I understand when it's a single function, but the case I was referring to was when it's the sum of a pair of functions.
If the limit is as @PeroK shows, then let h(x) = f(x) + g(x), and follow what I described earlier.
 
PeroK said:
AIUI you want to prove:
$$\text {If} \ \lim_{x \rightarrow a} f(x) = +\infty \ \text{and} \ \lim_{x \rightarrow a} g(x) = +\infty, $$
$$\ \text{then} \ \lim_{x \rightarrow a} (f(x)+g(x)) = +\infty$$

Yes, although for all cases involving an infinity. I think the website I had mentioned goes into this after dealing with non-infinity cases. I will review that; I think it might explain what I am looking for.
 
swampwiz said:
Yes, although for all cases involving an infinity. I think the website I had mentioned goes into this after dealing with non-infinity cases. I will review that; I think it might explain what I am looking for.

It shouldn't be hard to prove.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
15K
  • · Replies 24 ·
Replies
24
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
2K
  • · Replies 28 ·
Replies
28
Views
9K