I Proof of Column Extraction Theorem for Finding a Basis for Col(A)

mattTch
Messages
2
Reaction score
0
TL;DR Summary
Let A be an m×n matrix. I am not sure why it's immediately obvious that the set B containing all and only the column vectors of R = RREF(A) which have leading ones, forms a basis for R. In particular, why is it the case that Span(B) = Col(R)? FYI: The linear independence of B is obvious to me.
Theorem: The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover, dimCol(A)=rank(A).
 
Physics news on Phys.org
Consider:

1. If \alpha : V \to W is a linear map and B = \{b_i\} is a basis for V, then \alpha(B) spans \alpha(V). This follows from linearity of \alpha: If v \in V then v = \sum_i a_ib_i and <br /> \alpha(v) = \alpha\left(\sum _ia_i b_i\right) = \sum_i a_i \alpha(b_i).

2. The ith column of a matrix is the image of the ith standard basis vector.

3. It follows from the definition of RREF that columns which don't have a leading 1 are linear combinations of the columns which do.
 
Why does 3 follow from the definition of RREF?
 
mattTch said:
Why does 3 follow from the definition of RREF?
Can chip in? If I've understood your question this might help.

Consider an example RREF matrix:

##\begin{bmatrix}
1 & 0 & 2 & 0 & 8\\
0 & 1 & 7 & 0 & 3\\
0 & 0 & 0 & 1 & 2\\
0 & 0 & 0 & 0 & 0
\end{bmatrix} ##

Some columns contain a leading '1' (with zeroes for all other elements). These are the basis columns.

Other columns do not contain a leading '1'. These are non-basis columns.

The basis columns here are ##C_1 = \begin{bmatrix}
1\\
0\\
0\\
0
\end{bmatrix}##, ##C_2 = \begin{bmatrix}
0\\
1\\
0\\
0
\end{bmatrix}## and ##C_4 = \begin{bmatrix}
0\\
0\\
1\\
0
\end{bmatrix}##.

From inspection it should be clear that any non-basis column can be constructed as a linear combination of the basis columns, e.g. ##C_5 = 8C_1 + 3C_2 + 2C_4##.

That’s because every non-zero coefficient in a non-basis column is a simple multiple of the ‘1’ in a basis column.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top