MHB Proof of Fourier Series: F(ax) = (1/a)f(k/a) with F(x) as Fourier Transform

Click For Summary
The discussion focuses on proving that the Fourier transform of F(ax) is (1/a)f(k/a) for a > 0, where F(x) is the original function and f(k) is its Fourier transform. The proof involves applying a change of variable in the integral definition of the Fourier transform. There is a noted confusion regarding the thread title, which mentions Fourier series, while the content pertains to Fourier transforms. The participants clarify that the focus is indeed on the Fourier transform. The mathematical derivation confirms the relationship between the scaling of the function and its Fourier transform.
Poirot1
Messages
243
Reaction score
0
Let f(k) be the Fourier transform of F(x). Prove that the Fourier transorm of F(ax) is $\frac{1}{a}f(\frac{k}{a})$ where a>0 and the Fourier transform is defined to have a factor of 1/2pi.
 
Physics news on Phys.org
Poirot said:
Let f(k) be the Fourier transform of F(x). Prove that the Fourier transorm of F(ax) is $\frac{1}{a}f(\frac{k}{a})$ where a>0 and the Fourier transform is defined to have a factor of 1/2pi.

The particular form of the FT you are using is not that important, the basic idea is that:

\[\mathfrak{F} \big[ F(ax) \big] (k) = \int_{-\infty}^{\infty} F(ax) e^{-kx{\rm{i}}}\; dx\]

Now make the change of variable \(x^{*}=ax\) and the result drops out.

CB
 
Poirot said:
Let f(k) be the Fourier transform of F(x). Prove that the Fourier transorm of F(ax) is $\frac{1}{a}f(\frac{k}{a})$ where a>0 and the Fourier transform is defined to have a factor of 1/2pi.

There is confusion here about the thread title (Fourier series) and content (Fourier transform). I have answered for the FT, is that what you intended?

CB
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
28
Views
6K
  • · Replies 2 ·
Replies
2
Views
4K