Scenario in the linked post 133.
Fidelity of signal is lost due to program A swapping characters.
Scenario is revised eliminating programs.
Pic 1 has revised ct axis, with a common origin for simplification.
A event is A(0, 4.5).
A sends instantaneous signal (magenta) to B, pic 1.
B assigns time of 7.5 to A event using SR convention (blue), pic 1 and 2.
We assume that a tachyon emitted by one of these transmitters will move at infinite speed in the rest frame of the transmitter that emitted them.
This is contradicted in pic 2, since an instantaneous signal would have no history.
The A to B signal could be interpreted as moving backward in time, but can be explained as the result of using two different standards; an instantaneous signal for communication, and a signal at c for measuring coordinates.
In pic 3, c'=2c, so v=.8/2=.4, with 1/γ=.917.
The B radar round trip is 2.75 to 6.19, assigning A event to 4.47, offset by .34
In pic 4, c'=10c, so v=.8/10=.08, with 1/γ=.997.
The B radar round trip is 4.14 to 4.86, assigning A event to 4.50, offset by 0.
As the radar speed increases, the communication signal becomes near instantaneous in the B frame.
If a different messenger entity existed that moved ftl, the SR synch convention would have to be revised to include it as a replacement for the role of upper speed limit.
Instantaneous signals eliminate the role of cause and effect and an orderly, predictable world, and therefore undesirable.
There is a similar response in the linked post 132, to the suggestion of "abandoning causality" with
"So, instead of pushing to abandon the idea of a preferred temporal order, why not take the radiative arrow of time as fundamental vis the adoption of its archetypal form as the fundamental wave dynamic?
Anyway, this seems to me to be conceptually preferable to taking calculational conveniences as literally corresponding to the real world."
My quotes from the author of SR were intended to show the same, that his "stipulation" is only a convenience, and does not correspond to real world phenomena.