Proof of Invariance of Spacetime Interval

Click For Summary
SUMMARY

The forum discussion centers on the proof of the Invariance of Spacetime Interval as presented in "Spacetime Physics" by Taylor and Wheeler. The proof utilizes a rocket apparatus that reflects light to demonstrate the constant speed of light and its implications in different reference frames. The conversation also explores the application of relativistic velocity transformation when considering particles instead of light, emphasizing the use of the Lorentz transform for a general proof. The conclusion is that the spacetime interval remains invariant across all reference frames, confirmed through mathematical substitution and simplification.

PREREQUISITES
  • Understanding of Lorentz transformations
  • Familiarity with the concept of spacetime intervals
  • Knowledge of relativistic velocity transformation
  • Basic geometry and algebra skills
NEXT STEPS
  • Study the Lorentz transformation equations in detail
  • Learn about the implications of spacetime intervals in different reference frames
  • Explore the relativistic velocity addition formula
  • Investigate applications of spacetime concepts in modern physics
USEFUL FOR

Students of physics, educators teaching relativity, and researchers interested in the mathematical foundations of spacetime concepts.

PLAGUE
Messages
36
Reaction score
2
TL;DR
How to prove it without using flash of light but a particle?
I was going through Spacetime Physics by Taylor and Wheeler and came to a point where they showed a proof of Invariance of Spacetime Interval. You can find the proof Here and Here is the second part of that proof.

They used an apparatus that flies straight "up" 3 meters to a mirror. There it reflects straight back down to the photodetector. This happens in the rocket frame.

In the laboratory frame, the path of the flash appears as that of a tent. So, light travels a greater distance in this frame. But since the speed of light is constant, the time of the travel is also greater.

Then they use simple geometry and Invariance of Spacetime Interval is proved.

But what if we used a particle instead of a flash of light? Say the particle would keep bouncing between two points? The speed of the particle is definitely not a constant. Wouldn't it take the same time to cross the tent like structure and the straight path in two of the respective frames? In that case, how can one prove Invariance of Spacetime Interval?

Here is the full book.
 
Physics news on Phys.org
PLAGUE said:
But what if we used a particle instead of a flash of light? Say the particle would keep bouncing between two points? The speed of the particle is definitely not a constant. Wouldn't it take the same time to cross the tent like structure and the straight path in two of the respective frames? In that case, how can one prove Invariance of Spacetime Interval?
You would need to calculate how the velocity of the particle transforms between reference frames. This is something called relativistic velocity transformation (or addition).

https://phys.libretexts.org/Bookshe...ty/5.07:_Relativistic_Velocity_Transformation
 
PLAGUE said:
TL;DR Summary: How to prove it without using flash of light but a particle?

In that case, how can one prove Invariance of Spacetime Interval?
As @PeroK said, you can prove it in that case by using the relativistic velocity addition formula. However, once you step away from light it makes more sense to prove it in general by using the Lorentz transform. Once you have a general proof then you do not have to worry about proving it for each case.

The general proof is super straightforward. Simply start with the formula for the spacetime interval $$ds^2=-c^2 dt^2+dx^2+dy^2+dz^2$$ Then substitute the inverse Lorentz transform formulas $$t=\gamma \left( t'+\frac{vx'}{c^2}\right)$$$$x=\gamma\left(x'+vt'\right)$$$$y=y'$$$$z=z'$$Then simplify to get $$ds^2=-c^2 dt'^2+dx'^2+dy'^2+dz'^2=ds'^2$$

This shows that the spacetime interval formula is the same in all reference frames. That is what is meant by it being invariant.
 
  • Like
Likes   Reactions: PeroK
PeroK said:
You would need to calculate how the velocity of the particle transforms between reference frames. This is something called relativistic velocity transformation (or addition).

https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/05:__Relativity/5.07:_Relativistic_Velocity_Transformation
Isn't relativistic velocity is for, in such cases, horizontal motion? As I understand, our particle have no horizontal motion, but only vertical motion. Or am I getting it wrong?
 
PLAGUE said:
Isn't relativistic velocity is for, in such cases, horizontal motion?
I believe that the special theory of relativity permits motion in all three spatial dimensions.
 
PLAGUE said:
Isn't relativistic velocity is for, in such cases, horizontal motion?
The simple formula is, yes. You'll need to find a general formula. Dale's approach is easier.
 
The above libretexts link gives the transformation of all three velocity components for an arbitrary boost in the x-direction. That covers most cases you are likely to need.
 
  • Like
Likes   Reactions: Dale

Similar threads

  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
6K
Replies
8
Views
754
  • · Replies 144 ·
5
Replies
144
Views
11K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 141 ·
5
Replies
141
Views
9K