I Proof of Lorentz Gauge Existence: Help Understanding Schutz 8.3

epovo
Messages
114
Reaction score
21
TL;DR Summary
In the derivation of the proof there is a step that I cannot make sense of
In Schutz 8.3, while proving that a Lorentz gauge exists, it is stated that
$$\bar h^{(new)}_{\mu\nu} = \bar h^{(old)}_{\mu\nu} - \xi_{\mu,\nu} - \xi_{\nu,\mu} + \eta_{\mu\nu}\xi^\alpha_{,\alpha}$$

where ##\bar h## is the trace reverse and ##\xi^\alpha## are the gauge functions. Then it follows with:
"Then the divergence is"
$$\bar h^{(new)\mu\nu}_{\,\,\,\,\,\,\,,\nu} = \bar h^{(old)\mu\nu}_{\,\,\,\,\,\,\,\,,\nu} - \xi^{\mu,\nu}_{\,\,\,,\nu}$$
I can't see why the divergence is that! I've tried and tried but I can't see it. Any help?
 
Physics news on Phys.org
epovo said:
I can't see why the divergence is that! I've tried and tried but I can't see it. Any help?
$$-\xi^{\nu,\mu}_{\,\,\,,\nu} + \eta^{\mu\nu} \xi^{\alpha}_{\,\,\,,\alpha \nu} = -\xi^{\nu,\mu}_{\,\,\,,\nu} + \xi^{\alpha,\mu}_{\,\,\,,\alpha} = 0,$$
since ##\alpha## and ##\nu## are both dummy summation indices.
 
  • Like
Likes epovo and vanhees71
True! Thank you
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top