I Proof of Lorentz Gauge Existence: Help Understanding Schutz 8.3

Click For Summary
In Schutz 8.3, the existence of a Lorentz gauge is demonstrated through the equation involving the trace reverse and gauge functions. The divergence of the new gauge is questioned, specifically why it simplifies to a certain form. The discussion highlights that the terms involving dummy summation indices ultimately cancel out, leading to the conclusion that the divergence is indeed zero. This clarification helps in understanding the mathematical manipulation involved in the proof. The exchange emphasizes the importance of recognizing dummy indices in tensor calculus.
epovo
Messages
114
Reaction score
21
TL;DR
In the derivation of the proof there is a step that I cannot make sense of
In Schutz 8.3, while proving that a Lorentz gauge exists, it is stated that
$$\bar h^{(new)}_{\mu\nu} = \bar h^{(old)}_{\mu\nu} - \xi_{\mu,\nu} - \xi_{\nu,\mu} + \eta_{\mu\nu}\xi^\alpha_{,\alpha}$$

where ##\bar h## is the trace reverse and ##\xi^\alpha## are the gauge functions. Then it follows with:
"Then the divergence is"
$$\bar h^{(new)\mu\nu}_{\,\,\,\,\,\,\,,\nu} = \bar h^{(old)\mu\nu}_{\,\,\,\,\,\,\,\,,\nu} - \xi^{\mu,\nu}_{\,\,\,,\nu}$$
I can't see why the divergence is that! I've tried and tried but I can't see it. Any help?
 
Physics news on Phys.org
epovo said:
I can't see why the divergence is that! I've tried and tried but I can't see it. Any help?
$$-\xi^{\nu,\mu}_{\,\,\,,\nu} + \eta^{\mu\nu} \xi^{\alpha}_{\,\,\,,\alpha \nu} = -\xi^{\nu,\mu}_{\,\,\,,\nu} + \xi^{\alpha,\mu}_{\,\,\,,\alpha} = 0,$$
since ##\alpha## and ##\nu## are both dummy summation indices.
 
  • Like
Likes epovo and vanhees71
True! Thank you
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...