1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Proof of Wheatstone bridge equation

  1. Dec 26, 2017 #1
    1. The problem statement, all variables and given/known data

    Prove the following equation:

    ## \Delta U=\frac {R_1R_4}{(R_1+R_4)^2}(\frac {\Delta R_1}{R_1}-\frac {\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##

    This is used in Wheatstone bridge

    whets.png

    2. Relevant equations

    U=RI

    3. The attempt at a solution
    This has been a real head-scratcher

    Two voltage dividers can be found for starters. Voltage's direction is assumed to be clockwise

    ##V_{in1}=I_2(R_2+R_3)##

    ##I_2=\frac{V_{in1}}{R_2+R_3}##

    ##V_{out1}=I_2R_3##

    ##V_{out1}=V_{in1}\frac{R_3}{R_2+R_3}##

    Similarly:

    ##V_{out2}=V_{in1}\frac{R_4}{R_1+R_4}##

    ##V_G## is voltage between A and B

    ##V_{out1}-V_{out2}=V_G##

    ##V_{in1}\frac{R_3}{R_2+R_3}-V_{in1}\frac{R_4}{R_1+R_4}=V_G##

    ##V_{in1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=V_G##

    ##V_{in1}=E##

    ##V_G=\Delta U## so then

    ##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##

    I have calculated voltages in different circuits and tried to think this problem in different ways, but the real problem is that how is ##\Delta R_i## inserted in to equations. Assumption goes that it is added by ##R_i+\Delta R_i##. Maybe that is incorrect?

    Help is very much appreciated!

    edit: Misspelling corrected

    Also particularizing that ##\Delta R_i## is a change in one resistance
     
    Last edited: Dec 26, 2017
  2. jcsd
  3. Dec 26, 2017 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Which suggests that the Δ in ΔU refers to the consequent change in U, not to the potential difference between A and B at a given set of R values.
     
  4. Dec 26, 2017 #3
    Yes that is true, ##\Delta U## is zero before the change of resistances.
     
  5. Dec 26, 2017 #4

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    So this equation:
    ##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##
    Should read
    ##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=U##
    and you need a different expression for ##\Delta U##.
     
  6. Dec 27, 2017 #5
    Right now I'm trying to figure out why this would not be possible:

    ##E(\frac{R_3+\Delta R_3}{R_2+\Delta R_2+R_3+\Delta R_3}-\frac{R_4+\Delta R_4}{R_1+\Delta R_1+R_4+\Delta R_4})=\Delta U##

    I can simplify it a bit, but is this the right way to go
     
  7. Dec 27, 2017 #6

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I do not see how you get that. It looks wrong.
    You have an equation for U (second eqn in post #4). Write out the corresponding eqn for U+ΔU.
     
  8. Dec 29, 2017 #7
    Now that I thought about it, simply adding the change does not make so much sense.

    But then I got an idea to take partial derivates since it is about change. Adding those partial derivates together should give the overall change in voltage.

    ##U=E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})##

    Seems like marking ##U## as ##U_{BA}## is needed since I took potential difference with ##V_{out1}-V_{out2}=V_G##

    ##U_{BA}=(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E##

    This should be legal: ##\Delta U_{BA}=dU_{BA}##

    Thus ##dU_{BA}=\frac {\partial} {\partial R_1}U_{BA}\Delta R_1+\frac {\partial} {\partial R_2}U_{BA}\Delta R_2+\frac {\partial} {\partial R_3}U_{BA}\Delta R_3+\frac {\partial} {\partial R_4}U_{BA}\Delta R_4##

    Solving partial derivates each:

    ##\frac {\partial} {\partial R_1}U_{BA}\Delta R_1=\frac {\partial} {\partial R_1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_1=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1##

    ##\frac {\partial} {\partial R_2}U_{BA}\Delta R_2=\frac {\partial} {\partial R_2}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_2=\frac{R_3}{(R_2+R_3)^2}E\Delta R_2##

    ##\frac {\partial} {\partial R_3}U_{BA}\Delta R_3=\frac {\partial} {\partial R_3}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_3=-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3##

    ##\frac {\partial} {\partial R_4}U_{BA}\Delta R_4=\frac {\partial} {\partial R_4}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_4=\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

    ##dU_{BA}=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1+\frac{R_3}{(R_2+R_3)^2}E\Delta R_2-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3+\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

    ##dU_{BA}=(-\frac{R_4}{R_1(1+\frac{R_4}{R_1})^2}\frac{\Delta R_1}{R_1}+\frac{R_3}{R_2(1+\frac{R_4}{R_1})^2}\frac{\Delta R_2}{R_2}-\frac{R_2}{R_3(1+\frac{R_1}{R_4})^2}\frac{\Delta R_3}{R_3}+\frac{R_1}{R_4(1+\frac{R_1}{R_4})^2}\frac{\Delta R_4}{R_4})E##

    I just kept playing with the identity ##\frac{R_2}{R_3}=\frac{R_1}{R_4}## and I got:

    ##dU_{BA}=\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

    It has wrong signs because of ##V_{out1}-V_{out2}=V_G##

    So I think the equation is about ##U_{AB}##

    ##\Delta U_{AB}=dU_{AB}=-dU_{BA}=-\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

    ##=\frac{R_1R_4}{(R_1+R_4)^2}(\frac{\Delta R_1}{R_1}-\frac{\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##
     
  9. Dec 29, 2017 #8

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Looks good.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted