(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Prove the following equation:

## \Delta U=\frac {R_1R_4}{(R_1+R_4)^2}(\frac {\Delta R_1}{R_1}-\frac {\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##

This is used in Wheatstone bridge

2. Relevant equations

U=RI

3. The attempt at a solution

This has been a real head-scratcher

Two voltage dividers can be found for starters. Voltage's direction is assumed to be clockwise

##V_{in1}=I_2(R_2+R_3)##

##I_2=\frac{V_{in1}}{R_2+R_3}##

##V_{out1}=I_2R_3##

##V_{out1}=V_{in1}\frac{R_3}{R_2+R_3}##

Similarly:

##V_{out2}=V_{in1}\frac{R_4}{R_1+R_4}##

##V_G## is voltage between A and B

##V_{out1}-V_{out2}=V_G##

##V_{in1}\frac{R_3}{R_2+R_3}-V_{in1}\frac{R_4}{R_1+R_4}=V_G##

##V_{in1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=V_G##

##V_{in1}=E##

##V_G=\Delta U## so then

##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##

I have calculated voltages in different circuits and tried to think this problem in different ways, but the real problem is that how is ##\Delta R_i## inserted in to equations. Assumption goes that it is added by ##R_i+\Delta R_i##. Maybe that is incorrect?

Help is very much appreciated!

edit: Misspelling corrected

Also particularizing that ##\Delta R_i## is a change in one resistance

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof of Wheatstone bridge equation

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**